यदि $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ समांतर श्रेणी में हैं, तो सिद्ध कीजिए कि $a, b, c$ समांतर श्रेणी में हैं।
It is given that $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ are in $A.P.$
$\therefore b\left(\frac{1}{c}+\frac{1}{a}\right)-a\left(\frac{1}{b}+\frac{1}{c}\right)=c\left(\frac{1}{a}+\frac{1}{b}\right)-b\left(\frac{1}{c}+\frac{1}{a}\right)$
$\Rightarrow \frac{b(a+c)}{a c}-\frac{a(b+c)}{b c}=\frac{c(a+b)}{a b}-\frac{b(a+c)}{a c}$
$\Rightarrow \frac{b^{2} a+b^{2} c-a^{2} b-a^{2} c}{a b c}=\frac{c^{2} a+c^{2} b-b^{2} a-b^{2} c}{a b c}$
$\Rightarrow b^{2} a-a^{2} b+b^{2} c-a^{2} c=c^{2} a-b^{2} a+c^{2} b-b^{2} c$
$\Rightarrow a b(b-a)+c\left(b^{2}-a^{2}\right)=a\left(c^{2}-b^{2}\right)+b c(c-b)$
$\Rightarrow a b(b-a)+c(b-a)(b+a)=a(c-b)(c+b)+b c(c-b)$
$\Rightarrow(b-a)(a b+c b+c a)=(c-b)(a c+a b+b c)$
$\Rightarrow b-a=c-b$
Thus, $a, b$ and $c$ are in $A.P.$
$3$ व $23$ के बीच चार समान्तर माध्य पद है
यदि $x=\sum_{n=0}^{\infty} a^n, y=\sum_{n=0}^{\infty} b^n, z=\sum_{n=0}^{\infty} c^n$ है, जहां $a , b , c$ समान्तर श्रेणी में है और $| a |<1,| b | < 1$, $| c | < 1, abc \neq 0$ है तब
किसी समान्तर श्रेणी का $n$ वाँ पद $(2n - 1)$ है, तो उस श्रेणी के $n$ पदों का योग होगा
यदि $b _{1}, b _{2}, b _{3}, \ldots b _{11}$ एक वर्धमान $A.P.$ है और इसके पदों का प्रसरण $90$ है, तो इस $A.P.$ का सार्व अन्तर है
यदि किसी समांतर श्रेणी के $n$ पदों का योगफल $\left(p n+q n^{2}\right)$, है, जहाँ $p$ तथा $q$ अचर हों तो सार्व अंतर ज्ञात कीजिए।