અહી $a$, $b$ એ બે શૂન્યતર વાસ્તવિક સંખ્યા છે . જો  $p$ અને $r$ એ સમીકરણ $x ^{2}-8 ax +2 a =0$ ના બીજ છે અને $q$ અને $s$ એ સમીકરણ $x^{2}+12 b x+6 b$ $=0$ ના બીજ છે કે જેથી  $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ એ સમાંતર શ્રેણીમાં છે તો $a ^{-1}- b ^{-1}$ ની કિમંત $......$ થાય.

  • [JEE MAIN 2022]
  • A

    $37$

  • B

    $36$

  • C

    $38$

  • D

    $32$

Similar Questions

સમાંતર શ્રેણીનાં ત્રણ ક્રમિક પદ પૈકી પ્રથમ પદ અને તૃતીય પદનો સરવાળો $12$ છે તથા પ્રથમ પદ અને દ્વિતીય પદનો ગુણાકાર $ 24$ છે, તો પ્રથમ પદ..... હશે.

સમાંતર શ્રેણીનું પદ $2$  અને સામાન્ય તફાવત $4 $ હોય, તો તેના પ્રથમ $40$ પદોનો સરવાળો........ છે.

સમગુણોત્તર શ્રેણીના કેટલાક પદોનો સરવાળો $728$ છે, જો સામાન્ય ગુણોત્તર $3$ હોય અને છેલ્લું પદ $486$ તો શ્રેણીનું પહેલું પદ શું હોય?

જો એક સમાંતર શ્રેણી $a_{1} a_{2}, a_{3}, \ldots$ ના પ્રથમ $11$ પદોનો સરવાળો $0\left(\mathrm{a}_{1} \neq 0\right)$ થાય અને સમાંતર શ્રેણી $a_{1}, a_{3}, a_{5}, \ldots, a_{23}$ પદોનો સરવાળો $k a_{1}$ થાય તો $k$ ની કિમત મેળવો 

  • [JEE MAIN 2020]

$2$ અથવા $5$ વડે વિભાજ્ય હોય તેવી $1$ થી $100$ વચ્ચેની સંખ્યાનો સરવાળો મેળવો.

  • [IIT 1984]