Let $a$, $b$ be two non-zero real numbers. If $p$ and $r$ are the roots of the equation $x ^{2}-8 ax +2 a =0$ and $q$ and $s$ are the roots of the equation $x^{2}+12 b x+6 b$ $=0$, such that $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ are in A.P., then $a ^{-1}- b ^{-1}$ is equal to $......$
$37$
$36$
$38$
$32$
Let $a_1, a_2, a_3, \ldots$ be an arithmetic progression with $a_1=7$ and common difference $8$ . Let $T_1, T_2, T_3, \ldots$ be such that $T_1=3$ and $T_{n+1}-T_n=a_n$ for $n \geq 1$. Then, which of the following is/are $TRUE$ ?
$(A)$ $T_{20}=1604$
$(B)$ $\sum_{ k =1}^{20} T_{ k }=10510$
$(C)$ $T_{30}=3454$
$(D)$ $\sum_{ k =1}^{30} T_{ k }=35610$
A man starts repaying a loan as first instalment of $Rs.$ $100 .$ If he increases the instalment by $Rs \,5$ every month, what amount he will pay in the $30^{\text {th }}$ instalment?
A man deposited $Rs$ $10000$ in a bank at the rate of $5 \%$ simple interest annually. Find the amount in $15^{\text {th }}$ year since he deposited the amount and also calculate the total amount after $20$ years.
The first term of an $A.P. $ is $2$ and common difference is $4$. The sum of its $40$ terms will be
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=2^{n}$