A man starts repaying a loan as first instalment of $Rs.$ $100 .$ If he increases the instalment by $Rs \,5$ every month, what amount he will pay in the $30^{\text {th }}$ instalment?
The first installment of the load is $Rs.$ $100 .$
The second installment of the load is $Rs.$ $105$ and so on.
The amount that the man repays every month forms an $A.P.$
The $A.P.$ is $100,105,110 \ldots$
First term, $a=100$
Common difference, $d=5$
$A_{30}=a+(30-1) d$
$=100+(29)(5)$
$=100+145$
$=245$
Thus, the amount to be paid in the $30^{\text {th }}$ installment is $Rs.$ $245 .$
If the ${p^{th}}$ term of an $A.P.$ be $\frac{1}{q}$ and ${q^{th}}$ term be $\frac{1}{p}$, then the sum of its $p{q^{th}}$ terms will be
If $1,\,\,{\log _9}({3^{1 - x}} + 2),\,\,{\log _3}({4.3^x} - 1)$ are in $A.P.$ then $x$ equals
Show that the sum of $(m+n)^{ th }$ and $(m-n)^{ th }$ terms of an $A.P.$ is equal to twice the $m^{\text {th }}$ term.
If $a, b, c, d$ are in $G.P.,$ prove that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in $G.P.$
The number of terms common between the two series $2 + 5 + 8 +.....$ upto $50$ terms and the series $3 + 5 + 7 + 9.....$ upto $60$ terms, is