A man deposited $Rs$ $10000$ in a bank at the rate of $5 \%$ simple interest annually. Find the amount in $15^{\text {th }}$ year since he deposited the amount and also calculate the total amount after $20$ years.
It is given that the man deposited $Rs.$ $10000$ in a bank at the rate of $5 \%$ simple interest annually.
$=\frac{5}{100} \times Rs .10000= Rs .500$
$\therefore$ Interest in first year $10000+\underbrace{500+500+\ldots+500}_{14 \text { times }}$
Amount in $15^{\text {th }}$ year
$= Rs . 10000+14 \times Rs .500$
$= Rs .10000+ Rs .7000$
$= Rs .17000$
Amount after $20$ years $= Rs .10000+\underbrace{500+500+\ldots+500}_{20 \text { times }}$
$= Rs .10000+20 \times Rs .500$
$= Rs .10000+ Rs .10000$
$=R s .20000$
If $x=\sum \limits_{n=0}^{\infty} a^{n}, y=\sum\limits_{n=0}^{\infty} b^{n}, z=\sum\limits_{n=0}^{\infty} c^{n}$, where $a , b , c$ are in $A.P.$ and $|a| < 1,|b| < 1,|c| < 1$, $abc \neq 0$, then
Let $3,6,9,12, \ldots$ upto $78$ terms and $5,9,13,17, \ldots$ upto $59$ terms be two series. Then, the sum of the terms common to both the series is equal to
If the $10^{\text {th }}$ term of an A.P. is $\frac{1}{20}$ and its $20^{\text {th }}$ term is $\frac{1}{10},$ then the sum of its first $200$ terms is
Maximum value of sum of arithmetic progression $50, 48, 46, 44 ........$ is :-