Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=2^{n}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$a_{n}=2^{n}$

Substituting $n=1,2,3,4,5,$ we obtain

$a_{1}=2^{1}=2$

$a_{2}=2^{2}=4$

$a_{3}=2^{3}=8$

$a_{4}=2^{4}=16$

$a_{5}=2^{5}=32$

Therefore, the required terms are $2,4,8,16$ and $32$

Similar Questions

The sums of $n$ terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6 .$ Find the ratio of their $18^{\text {th }}$ terms.

If the ${p^{th}},\;{q^{th}}$ and ${r^{th}}$ term of an arithmetic sequence are $a , b$ and $c$ respectively, then the value of $[a(q - r)$ + $b(r - p)$ $ + c(p - q)] = $

Find the sum of all natural numbers lying between $100$ and $1000,$ which are multiples of $5 .$

Let ${S_1},{S_2},......,{S_{101}}$ be the consecutive terms of an $A.P$ . If $\frac{1}{{{S_1}{S_2}}} + \frac{1}{{{S_2}{S_3}}} + .... + \frac{1}{{{S_{100}}{S_{101}}}} = \frac{1}{6}$ and ${S_1} + {S_{101}} = 50$ , then $\left| {{S_1} - {S_{101}}} \right|$ is equal to

The number of terms in an $A .P.$ is even ; the sum of the odd terms in it is $24$ and that the even terms is $30$. If the last term exceeds the first term by $10\frac{1}{2}$ , then the number of terms in the $A.P.$ is

  • [JEE MAIN 2014]