माना $C _{ r },(1+ x )^{10}$ के प्रसार में $x ^{ r }$ के द्विपद गुणांक को प्रदर्शित करता है। यदि $\alpha, \beta \in R$ के लिए
$C _1+3.2 C _2+5 \cdot 3 C _3+\ldots 10$ पद तक
$=\frac{\alpha \times 2^{11}}{2^\beta-1}( C _0+\frac{ C _1}{2}+\frac{ C _2}{3}+\ldots . .10$ पद तक है,तो $\alpha+\beta$ का मान होगा
$(1+x)^{10}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots+C_{10} x^{10}$
Differentiating
$10(1+x)^{9}=C_{1}+2 C_{2} x+3 C_{3} x^{2}+\ldots+10 C_{10} x^{9}$
replace $x \rightarrow X ^{2}$
$10\left(1+x^{2}\right)^{9}=C_{1}+2 C_{2} x^{2}+3 C_{3} x^{4}+\ldots+10 C_{10} x^{18}$
$10 \cdot x\left(1+x^{2}\right)^{9}=C_{1} x+2 C_{2} x^{3}+3 C_{3} x^{5}+\ldots .+10 C_{10} x^{19}$
Differentiating
$10\left(\left(1+x^{2}\right)^{9} \cdot 1+x \cdot 9\left(1+x^{2}\right)^{8} 2 x\right)$
$=C_{1} x+2 C_{2} \cdot 3 x^{3}+3 \cdot 5 \cdot C_{3} x^{4}+\ldots .+10 \cdot 19 C_{10} x^{18}$
putting $x=1$
$10\left(2^{9}+18 \cdot 2^{8}\right)$
$= C _{1}+3 \cdot 2 \cdot C _{2}+5 \cdot 3 \cdot C _{3}+\ldots+19 \cdot 10 \cdot C _{10} $
$C _{1}+3 \cdot 2 \cdot C _{2}+\ldots \ldots+19 \cdot 10 \cdot C _{10}$
$=10 \cdot 2^{9} \cdot 10=100 \cdot 2^{9}$
$C _{0}+\frac{ C _{1}}{2}+\frac{ C _{2}}{3}+\ldots . .+\frac{ C _{9}}{11}+\frac{ C _{10}}{11}=\frac{2^{11}-1}{11}$
$10^{\text {th }} \text { term } 11^{\text {th }} \text { term }$
$C _{0}+\frac{ C _{1}}{2}+\frac{ C _{2}}{3}+\ldots .+\frac{ C _{9}}{11}=\frac{2^{11}-2}{11}$
Now, $100 \cdot 2^{9}=\frac{\alpha \cdot 2^{11}}{2^{\beta}-1}\left(\frac{2^{11}-2}{11}\right)$
Eqn. of form $y = k \left(2^{ x }-1\right)$.
It has infinite solutions even if we take $x, y \in N$.
श्रेणी $\sum\limits_{r = 0}^n {{{( - 1)}^r}\,{\,^n}{C_r}\left( {\frac{1}{{{2^r}}} + \frac{{{3^r}}}{{{2^{2r}}}} + \frac{{{7^r}}}{{{2^{3r}}}} + \frac{{{{15}^r}}}{{{2^{4r}}}} + .....m\,inksa rd } \right)} $ का योगफल है
यदि गुणनफल $\left(1+ x + x ^{2}+\ldots+ x ^{2 n }\right)\left(1- x + x ^{2}\right.$ $\left.- x ^{3}+\ldots+ x ^{2 n }\right)$ में, $x$ के सभी सम-घातों वाले गुणाकों का योगफल $61$ है, तो $n$ बराबर ....... है |
${(1 + x)^{15}}$ के प्रसार में अन्तिम आठ पदों के गुणांकों का योगफल है
माना $\sum_{\mathrm{r}=0}^{2023} \mathrm{r}^2{ }^{2023} \mathrm{C}_{\mathrm{r}}=2023 \times \alpha \times 2^{2022}$ है। तो $\alpha$ का मान है___________.
$\sum\limits_{k = 0}^{10} {^{20}{C_k} = } $