श्रेणी $\sum\limits_{r = 0}^n {{{( - 1)}^r}\,{\,^n}{C_r}\left( {\frac{1}{{{2^r}}} + \frac{{{3^r}}}{{{2^{2r}}}} + \frac{{{7^r}}}{{{2^{3r}}}} + \frac{{{{15}^r}}}{{{2^{4r}}}} + .....m\,inksa rd } \right)} $ का योगफल है

  • A

    $\frac{{{2^{mn}} - 1}}{{{2^{mn}}({2^n} - 1)}}$

  • B

    $\frac{{{2^{mn}} - 1}}{{{2^n} - 1}}$

  • C

    $\frac{{{2^{mn}} + 1}}{{{2^n} + 1}}$

  • D

    इनमें से कोई नहीं

Similar Questions

माना $(1+\mathrm{x})^{99}$ के प्रसार में $\mathrm{x}$ की विषम घातो के गुणांको का योग $\mathrm{K}$ है। माना $\left(2+\frac{1}{\sqrt{2}}\right)^{200}$ के प्रसार में मध्य पद $\mathrm{a}$ है। यदि $\frac{{ }^{200} \mathrm{C}_{99} \mathrm{~K}}{\mathrm{a}}=\frac{2^{\ell} \mathrm{m}}{\mathrm{n}}$, है। जहाँ $\mathrm{m}$ तथा $\mathrm{n}$ विषम संख्याएँ हैं तो क्रमित युग्म $(\ell, \mathrm{n})$ बराबर है।

  • [JEE MAIN 2023]

यदि ${(x + a)^n}$ के विस्तार में विषम पदों का योग $P$ तथा सम पदों का योग $Q$ हो, तो $({P^2} - {Q^2})$ का मान होगा       

$\frac{{{C_1}}}{{{C_0}}} + 2\frac{{{C_2}}}{{{C_1}}} + 3\frac{{{C_3}}}{{{C_2}}} + .... + 15\frac{{{C_{15}}}}{{{C_{14}}}} = $

  • [IIT 1962]

${(1 + x)^{15}}$ के प्रसार में अन्तिम आठ पदों के गुणांकों का योगफल है

यदि $b , a$ से बहुत छोटा है, जिनके लिए निम्न सर्वसमिका

$\frac{1}{a-b}+\frac{1}{a-2 b}+\frac{1}{a-3 b}+\ldots .+\frac{1}{a-n b}=\alpha n+\beta n^{2}+\gamma n^{3}$ में, $\frac{ b }{ a }$ की क्यूब और ऊँची घातों की उपेक्षा की जा सकती है, तो $\gamma$ बराबर है 

  • [JEE MAIN 2021]