${(1 + x)^{15}}$ के प्रसार में अन्तिम आठ पदों के गुणांकों का योगफल है
${2^{16}}$
${2^{15}}$
${2^{14}}$
इनमें से कोई नहीं
माना $(1+\mathrm{x})^{99}$ के प्रसार में $\mathrm{x}$ की विषम घातो के गुणांको का योग $\mathrm{K}$ है। माना $\left(2+\frac{1}{\sqrt{2}}\right)^{200}$ के प्रसार में मध्य पद $\mathrm{a}$ है। यदि $\frac{{ }^{200} \mathrm{C}_{99} \mathrm{~K}}{\mathrm{a}}=\frac{2^{\ell} \mathrm{m}}{\mathrm{n}}$, है। जहाँ $\mathrm{m}$ तथा $\mathrm{n}$ विषम संख्याएँ हैं तो क्रमित युग्म $(\ell, \mathrm{n})$ बराबर है।
$\left( {\begin{array}{*{20}{c}}n\\0\end{array}} \right) + 2\,\left( {\begin{array}{*{20}{c}}n\\1\end{array}} \right) + {2^2}\left( {\begin{array}{*{20}{c}}n\\2\end{array}} \right) + ..... + {2^n}\left( {\begin{array}{*{20}{c}}n\\n\end{array}} \right)$ का मान होगा
$x$ की घातों में $\left(1+x+x^{2}+x^{3}\right)^{6}$ के प्रसार में $x^{4}$ का गुणांक है .............
${C_0} - {C_1} + {C_2} - {C_3} + ..... + {( - 1)^n}{C_n}$ बराबर होगा
माना $\alpha=\sum_{k=0}^{\mathrm{n}}\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right)$ तथा $\beta=\sum_{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right)$ हैं। यदि $5 \alpha=6 \beta$ हैं, तो $\mathrm{n}$ बराबर है ............