Let $C _{ r }$ denote the binomial coefficient of $x ^{ r }$ in the expansion of $(1+x)^{10}$. If $\alpha, \beta \in R$. $C _{1}+3 \cdot 2 C _{2}+5 \cdot 3 C _{3}+\ldots$ upto $10$ terms $=\frac{\alpha \times 2^{11}}{2^{\beta}-1}\left( C _{0}+\frac{ C _{1}}{2}+\frac{ C _{2}}{3}+\ldots . .\right.$ upto 10 terms $)$ then the value of $\alpha+\beta$ is equal to
$(1+x)^{10}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots+C_{10} x^{10}$
Differentiating
$10(1+x)^{9}=C_{1}+2 C_{2} x+3 C_{3} x^{2}+\ldots+10 C_{10} x^{9}$
replace $x \rightarrow X ^{2}$
$10\left(1+x^{2}\right)^{9}=C_{1}+2 C_{2} x^{2}+3 C_{3} x^{4}+\ldots+10 C_{10} x^{18}$
$10 \cdot x\left(1+x^{2}\right)^{9}=C_{1} x+2 C_{2} x^{3}+3 C_{3} x^{5}+\ldots .+10 C_{10} x^{19}$
Differentiating
$10\left(\left(1+x^{2}\right)^{9} \cdot 1+x \cdot 9\left(1+x^{2}\right)^{8} 2 x\right)$
$=C_{1} x+2 C_{2} \cdot 3 x^{3}+3 \cdot 5 \cdot C_{3} x^{4}+\ldots .+10 \cdot 19 C_{10} x^{18}$
putting $x=1$
$10\left(2^{9}+18 \cdot 2^{8}\right)$
$= C _{1}+3 \cdot 2 \cdot C _{2}+5 \cdot 3 \cdot C _{3}+\ldots+19 \cdot 10 \cdot C _{10} $
$C _{1}+3 \cdot 2 \cdot C _{2}+\ldots \ldots+19 \cdot 10 \cdot C _{10}$
$=10 \cdot 2^{9} \cdot 10=100 \cdot 2^{9}$
$C _{0}+\frac{ C _{1}}{2}+\frac{ C _{2}}{3}+\ldots . .+\frac{ C _{9}}{11}+\frac{ C _{10}}{11}=\frac{2^{11}-1}{11}$
$10^{\text {th }} \text { term } 11^{\text {th }} \text { term }$
$C _{0}+\frac{ C _{1}}{2}+\frac{ C _{2}}{3}+\ldots .+\frac{ C _{9}}{11}=\frac{2^{11}-2}{11}$
Now, $100 \cdot 2^{9}=\frac{\alpha \cdot 2^{11}}{2^{\beta}-1}\left(\frac{2^{11}-2}{11}\right)$
Eqn. of form $y = k \left(2^{ x }-1\right)$.
It has infinite solutions even if we take $x, y \in N$.
A possible value of $^{\prime}x^{\prime}$, for which the ninth term in the expansion of $\left\{3^{\log _{3} \sqrt{25^{x-1}+7}}+3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}\right\}^{10}$ in the increasing powers of $3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}$ is equal to $180$ , is:
The sum of the last eight coefficients in the expansion of ${(1 + x)^{15}}$ is
If $S_n =$$\sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ and $T_n =$$\sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $ then $\frac{{{T_n}}}{{{S_n}}}$ is equal to
The coefficient of $x^r (0 \le r \le n - 1)$ in the expression :
$(x + 2)^{n-1} + (x + 2)^{n-2}. (x + 1) + (x + 2)^{n-3} . (x + 1)^2; + ...... + (x + 1)^{n-1}$ is :
If ${(1 - x + {x^2})^n} = {a_0} + {a_1}x + {a_2}{x^2} + .... + {a_{2n}}{x^{2n}}$, then ${a_0} + {a_2} + {a_4} + .... + {a_{2n}} = $