Let $S=\left\{\theta \in[-\pi, \pi]-\left\{\pm \frac{\pi}{2}\right\}: \sin \theta \tan \theta+\tan \theta=\sin 2 \theta\right\} \text {. }$ If $T =\sum_{\theta \in S } \cos 2 \theta$, then $T + n ( S )$ is equal
$7+\sqrt{3}$
$9$
$8+\sqrt{3}$
$10$
The total number of solution of $sin^4x + cos^4x = sinx\, cosx$ in $[0, 2\pi ]$ is equal to
If $n$ is any integer, then the general solution of the equation $\cos x - \sin x = \frac{1}{{\sqrt 2 }}$ is
The number of solutions of the equation $\sqrt[3]{{\sin \theta - 1}} + \sqrt[3]{{\sin \theta }} + \sqrt[3]{{\sin \theta + 1}} = 0$ in $[0,4\pi]$ is
Let $S$ be the sum of all solutions (in radians) of the equation $\sin ^{4} \theta+\cos ^{4} \theta-\sin \theta \cos \theta=0$ in $[0,4 \pi]$ Then $\frac{8 \mathrm{~S}}{\pi}$ is equal to ...... .
If $5{\cos ^2}\theta + 7{\sin ^2}\theta - 6 = 0$, then the general value of $\theta $ is