If $n$ is any integer, then the general solution of the equation $\cos x - \sin x = \frac{1}{{\sqrt 2 }}$ is
$x = 2n\pi - \frac{\pi }{{12}}$ or $x = 2n\pi + \frac{{7\pi }}{{12}}$
$x = n\pi \pm \frac{\pi }{{12}}$
$x = 2n\pi + \frac{\pi }{{12}}$ or $x = 2n\pi - \frac{{7\pi }}{{12}}$
$x = n\pi + \frac{\pi }{{12}}$ or $x = n\pi - \frac{{7\pi }}{{12}}$
The general solution of $\frac{{\tan \,2x\, - \,\tan \,x}}{{1\, + \,\tan \,x\,\tan \,2x}}\, = \,1$ is
The number of solutions of the pair of equations $ 2 \sin ^2 \theta-\cos 2 \theta=0 $, $ 2 \cos ^2 \theta-3 \sin \theta=0$ in the interval $[0,2 \pi]$ is
The general solution of ${\sin ^2}\theta \sec \theta + \sqrt 3 \tan \theta = 0$ is
If $\tan (\cot x) = \cot (\tan x),$ then $\sin 2x =$
If $\cos A\sin \left( {A - \frac{\pi }{6}} \right)$ is maximum, then the value of $A$ is equal to