If $5{\cos ^2}\theta + 7{\sin ^2}\theta - 6 = 0$, then the general value of $\theta $ is
$2n\pi \pm \frac{\pi }{4}$
$n\pi \pm \frac{\pi }{4}$
$n\pi + {( - 1)^n}\frac{\pi }{4}$
None of these
Number of roots of the equation ${\cos ^2}x + \frac{{\sqrt 3 + 1}}{2}\sin x - \frac{{\sqrt 3 }}{4} - 1 = 0$ which lie in the interval $[-\pi,\pi ]$ is
Find the solution of $\sin x=-\frac{\sqrt{3}}{2}$
The number of solutions of the equation $\sqrt[3]{{\sin \theta - 1}} + \sqrt[3]{{\sin \theta }} + \sqrt[3]{{\sin \theta + 1}} = 0$ in $[0,4\pi]$ is
Common roots of the equations $2{\sin ^2}x + {\sin ^2}2x = 2$ and $\sin 2x + \cos 2x = \tan x,$ are
If $\sin 2x + \sin 4x = 2\sin 3x,$ then $x =$