Let $S$ be the sum of all solutions (in radians) of the equation $\sin ^{4} \theta+\cos ^{4} \theta-\sin \theta \cos \theta=0$ in $[0,4 \pi]$ Then $\frac{8 \mathrm{~S}}{\pi}$ is equal to ...... .

  • [JEE MAIN 2021]
  • A

    $87$

  • B

    $78$

  • C

    $56$

  • D

    $65$

Similar Questions

The number of values of $x$ for which $sin2x + sin4x = 2$ is

The most general value of $\theta $ satisfying the equations $\sin \theta = \sin \alpha $ and $\cos \theta = \cos \alpha $ is

  • [IIT 1971]

Let $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\}$.

Then $\sum_{\theta \in S } \sin ^2\left(\theta+\frac{\pi}{4}\right)$ is equal to

  • [JEE MAIN 2023]

If $\sin \theta + \cos \theta = \sqrt 2 \cos \alpha $, then the general value of $\theta $ is

Number of roots of the equation ${\cos ^2}x + \frac{{\sqrt 3  + 1}}{2}\sin x - \frac{{\sqrt 3 }}{4} - 1 = 0$ which lie in the interval $[-\pi,\pi ]$ is