ઉપવલય $\mathrm{E}$ ની અક્ષોએ કાર્તેઝિય અક્ષોને સમાંતર છે અને કેન્દ્ર $(3,-4)$ અને એક નાભી $(4,-4)$ અને એક શિરોબિંદુ $(5,-4)$ આપેલ છે. જો $m x-y=4, m\,>\,0$ એ ઉપવલય $\mathrm{E}$ નો એક સ્પર્શક હોય તો $5 \mathrm{~m}^{2}$ ની કિમંત મેળવો.
$1$
$2$
$3$
$4$
જો ઉગમ બિંદુ પરથી ઉપવલય $\frac{x^2}{4}+\frac{y^2}{b^2}=1, b < 2$ નાં અભિલંબનું મહત્તમ અંતર $1$ હોય,તો ઉપવલયની ઉત્કેન્દ્રતા $.........$ છે.
પ્રકાશનું કિરણ બિંદુ $(2,1)$ માંથી પસાર થાય ને $y$ - અક્ષ પરનું બિંદુ $P$ થી પરાવર્તિત પામી ને બિંદુ $(5,3)$ માંથી પસાર થાય છે. પરાવર્તિત કિરણ એ ઉપવલયની નિયામિકા બને છે કે જેની ઉત્કેન્દ્રિતા $\frac{1}{3}$ છે અને નજીકના નાભીનું આ નિયામિકા થી અંતર $\frac{8}{\sqrt{53}}$ હોય તો બીજી નિયમિકાનું સમીકરણ મેળવો.
સમીકરણ $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ ક્યારે ઉપવલય દર્શાવે ?
ધારો કે $P$ એ $F_1$ અને $F_2$ નાભિઓ વાળા ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$પરનું ચલિત બિંદુ છે. જો ત્રિકોણ $PF_1F_2$ નું ક્ષેત્રફળ $A$ હોય તો $A$ નું મહત્તમ મુલ્ય :
આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$