આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ

$\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given equation is $\frac{x^2}{49}+\frac{y^{2}}{36}=1$ or $\frac{x^2} {7^{2}}+\frac{y^{2}}{6^{2}}=1$

Here, the denominator of $\frac{x^{2}}{49}$ is greater than the denominator of $\frac{y^{2}}{36}$

Therefore, the major axis is along the $x-$ axis, while the minor axis is along the $y-$ axis.

On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ we obtain $a=7$ and $b=6$

$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{49-36}=\sqrt{13}$

Therefore,

The coordinates of the foci are $(\pm \,\sqrt{13}, 0)$

The coordinates of the vertices are $(±7,\,0)$

Length of major axis $=2 a =14$

Length of minor axis $=2 b =12$

Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{13}}{7}$

Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 36}{7}=\frac{72}{7}$

Similar Questions

બિંદુ $ (1, 2)$  માંથી ઉપવલય $ 3x^2 + 2y^2 = 5$  પર દોરાતા સ્પર્શકોની જોડ વચ્ચેનો ખૂણો.....

ધારો કે $L$ એ વક્રો $4 x^{2}+9 y^{2}=36$ અને $(2 x)^{2}+(2 y)^{2}=31$ ની સામાન્ય સ્પર્શરેખા છે. તો રેખા $L$ ના ઢાળનો વર્ગ ....... થાય.

  • [JEE MAIN 2021]

$x-$ અક્ષ મુખ્યઅક્ષ અને ઉંગમબિંદુ કેન્દ્ર હોય તેવા ઉપવલયને ધ્યાનમાં લો. જો તેની ઉત્કેન્દ્ર્તા $\frac{3}{5}$ અને નાભીઓ વચ્ચેનું અંતર $6$ હોય તો ઉપવલયના શિરોબિંદુઓથી રચાતા ચતુષ્કોણનું ક્ષેત્રફળ ચો.એકમમાં મેળવો. 

  • [JEE MAIN 2017]

કોઈ $\theta \in\left(0, \frac{\pi}{2}\right)$ માટે, જો અતિવલય $x^{2}-y^{2} \sec ^{2} \theta=10$ ની ઉત્કેન્દ્ર્તા એ ઉપવલય $x^{2} \sec ^{2} \theta+y^{2}=5$ ની ઉત્કેન્દ્રતા કરતાં $\sqrt{5}$ ગણી હોય તો ઉપવલયની નાભીલંબની લંબાઇ શોધો.

  • [JEE MAIN 2020]

આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ

$\frac{x^{2}}{16}+\frac {y^2} {9}=1$