Let $\mathrm{E}$ be an ellipse whose axes are parallel to the co-ordinates axes, having its center at $(3,-4)$, one focus at $(4,-4)$ and one vertex at $(5,-4) .$ If $m x-y=4, m\,>\,0$ is a tangent to the ellipse $\mathrm{E}$, then the value of $5 \mathrm{~m}^{2}$ is equal to $.....$
$1$
$2$
$3$
$4$
Let $T_1$ and $T_2$ be two distinct common tangents to the ellipse $E: \frac{x^2}{6}+\frac{y^2}{3}=1$ and the parabola $P: y^2=12 x$. Suppose that the tangent $T_1$ touches $P$ and $E$ at the point $A_1$ and $A_2$, respectively and the tangent $T_2$ touches $P$ and $E$ at the points $A_4$ and $A_3$, respectively. Then which of the following statements is(are) true?
($A$) The area of the quadrilateral $A_1 A _2 A _3 A _4$ is $35$ square units
($B$) The area of the quadrilateral $A_1 A_2 A_3 A_4$ is $36$ square units
($C$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-3,0)$
($D$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-6,0)$
If the ellipse $\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1$ meets the line $\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$ on the $x$-axis and the line $\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$ on the $y$-axis, then the eccentricity of the ellipse is
The locus of mid-points of the line segments joining $(-3,-5)$ and the points on the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ is :
The locus of a variable point whose distance from $(-2, 0)$ is $\frac{2}{3}$ times its distance from the line $x = - \frac{9}{2}$, is
In the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, the equation of diameter conjugate to the diameter $y = \frac{b}{a}x$, is