સમીકરણ $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ ક્યારે ઉપવલય દર્શાવે ?
$\Delta = 0, h^2 < ab$
$\Delta \neq 0, h^2 < ab$
$\Delta \neq 0, h^2 > ab$
$\Delta \neq 0, h^2 = ab$
ઉપવલય $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ પરનું બિંદુ $P$ એ દ્રીતીય ચરણમાં એવી રીતે આપેલ છે કે જેથી બિંદુ $\mathrm{P}$ આગળનો ઉપવલયનો સ્પર્શક એ રેખા $x+2 y=0$ ને લંબ થાય છે. અહી $S$ અને $\mathrm{S}^{\prime}$ એ ઉપવલયની નાભીઓ છે અને $\mathrm{e}$ એ ઉત્કેન્દ્રિતા છે. જો $\mathrm{A}$ એ ત્રિકોણ $SPS'$ નું ક્ષેત્રફળ છે તો $\left(5-\mathrm{e}^{2}\right) . \mathrm{A}$ ની કિમંત મેળવો.
જે ઉપવલયની નાભિઓ $(-1, 0)$ અને $(7, 0)$ અને ઉત્કેન્દ્રતા $1/2$ હોય, તે ઉપવલય પરના બિંદુનું પ્રચલ સ્વરૂપ :
ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{9}\,\, = \,\,1$ની નાભિઓમાંથી પસાર થતાં અને $(0, 3)$ કેન્દ્ર ધરાવતા વર્તૂળની ત્રિજ્યા =
$12$ મી લંબાઈનો સળિયો એવી રીતે ખસે છે કે જેથી તેના અંત્યબિંદુઓ યામાક્ષો પર રહે. $x-$ અક્ષ પરના અંત્યબિંદુથી $3$ મી દૂર આવેલ સળિયા પરના બિંદુ $P$ નો બિંદુગણ શોધો.