સમીકરણ $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ ક્યારે ઉપવલય દર્શાવે ?

  • A

    $\Delta = 0, h^2 < ab$

  • B

    $\Delta \neq 0, h^2 < ab$

  • C

    $\Delta \neq 0, h^2 > ab$

  • D

    $\Delta \neq 0, h^2 = ab$

Similar Questions

ઉપવલય $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ પરનું બિંદુ $P$ એ દ્રીતીય ચરણમાં એવી રીતે આપેલ છે કે જેથી બિંદુ  $\mathrm{P}$  આગળનો ઉપવલયનો સ્પર્શક એ રેખા $x+2 y=0$ ને લંબ થાય છે. અહી $S$ અને $\mathrm{S}^{\prime}$ એ ઉપવલયની નાભીઓ છે અને $\mathrm{e}$ એ ઉત્કેન્દ્રિતા છે. જો $\mathrm{A}$ એ ત્રિકોણ $SPS'$ નું ક્ષેત્રફળ છે તો $\left(5-\mathrm{e}^{2}\right) . \mathrm{A}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

જે ઉપવલયની નાભિઓ $(-1, 0)$ અને $(7, 0)$ અને ઉત્કેન્દ્રતા $1/2$ હોય, તે ઉપવલય પરના બિંદુનું પ્રચલ સ્વરૂપ :

અહી ઉપવલય $E _1: \frac{ x ^2}{ a ^2}+\frac{ y ^2}{b^2}=1, a > b$ અને  $E _2: \frac{ x ^2}{A^2}+\frac{ y ^2}{B^2}=1, A< B$ ની ઉત્કેન્દ્રિતા $\frac{1}{\sqrt{3}}$ સમાન છે. તેઓની નાભીલંભની લંબાઈનો ગુણાકાર $\frac{32}{\sqrt{3}}$ અને  $E_1$ ની નાભીઓ વચ્ચેનું અંતર $4$ છે. જો $E_1$ અને $E_2$ એ બિંદુઓ $A, B, C$ અને $D$ આગળ છેદે છે તો ચતુષ્કોણ $A B C D$ નું ક્ષેત્રફળ મેળવો.

  • [JEE MAIN 2025]

ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{9}\,\, = \,\,1$ની નાભિઓમાંથી પસાર થતાં અને $(0, 3)$ કેન્દ્ર ધરાવતા વર્તૂળની ત્રિજ્યા =

$12$ મી લંબાઈનો સળિયો એવી રીતે ખસે છે કે જેથી તેના અંત્યબિંદુઓ યામાક્ષો પર રહે. $x-$ અક્ષ પરના અંત્યબિંદુથી $3$ મી દૂર આવેલ સળિયા પરના બિંદુ $P$ નો બિંદુગણ શોધો.