माना $f : R \rightarrow R$,$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1$ द्वारा परिभाषित है। तो $\sum_{ k =1}^{20} \frac{1}{\sin ( k ) \sin ( k + f ( k ))}$ बराबर है
$\operatorname{cosec}^{2}(1) \operatorname{cosec}(21) \sin (20)$
$\sec ^{2}(1) \sec (21) \cos (20)$
$\operatorname{cosec}^{2}(21) \cos (20) \cos (2)$
$\sec ^{2}(21) \sin (20) \sin (2)$
समुच्चय $A$ में $3$ तथा $B$ में $4$ अवयव हैं, तब $A$ से $B$ में बनने वाले एकैकी प्रतिचित्रणों की संख्या होगी
फलन $f(x) = \cos (x/3)$ का परिसर (रेंज) है
यदि फलन $f(x)=\log _e\left(4 x^2+11 x+6\right)+$ $\sin ^{-1}(4 x+3)+\cos ^{-1}\left(\frac{10 x+6}{3}\right)$ का प्रांत $(\alpha, \beta]$ है, तो $36|\alpha+\beta|$ बराबर है :
यदि $f(x) = \frac{{\alpha x}}{{x + 1}},x \ne - 1$, $f(f(x)) = x$, $\alpha $ का मान क्या है
माना कि $E_1=\left\{x \in R : x \neq 1\right.$ और $\left.\frac{x}{x-1}>0\right\}$
और $E_2=\left\{x \in E_1: \sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)\right.$ एक वास्तविक संख्या (real number) है $\}$
(यहाँ प्रतिलोम त्रिकोणमितीय फलन (inverse trigonometric function) $\sin ^{-1} x,\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ में मान धारण करता है।)
माना कि फलन $f: E_1 \rightarrow R , f(x)=\log _e\left(\frac{x}{x-1}\right)$ के द्वारा परिभाषित है
और फलन $g: E_2 \rightarrow R , g(x)=\sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)$ के द्वारा परिभाषित है।
सूची $I$ | सूची $II$ |
$P$ $f$ का परिसर (range) है | $1$ $\left(-\infty, \frac{1}{1- e }\right] \cup\left[\frac{ e }{ e -1}, \infty\right)$ |
$Q$ $g$ के परिसर में समाहित (contained) है | $2$ $(0,1)$ |
$R$ $f$ के प्रान्त (domain) में समाहित है | $3$ $\left[-\frac{1}{2}, \frac{1}{2}\right]$ |
$S$ $g$ का प्रान्त है | $4$ $(-\infty, 0) \cup(0, \infty)$ |
$5$ $\left(-\infty, \frac{ e }{ e -1}\right]$ | |
$6$ $(-\infty, 0) \cup\left(\frac{1}{2}, \frac{ e }{ e -1}\right]$ |
दिए हुए विकल्पों मे से सही विकल्प है: