The positive integer value of $n>3$ satisfying the equation $\frac{1}{\sin \left(\frac{\pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)}+\frac{1}{\sin \left(\frac{3 \pi}{n}\right)}$ is
$2$
$6$
$7$
$8$
If $\theta $ and $\phi $ are acute satisfying $\sin \theta = \frac{1}{2},$ $\cos \phi = \frac{1}{3},$ then $\theta + \phi \in $
Number of solutions of equation $secx = 1 + cosx + cos^2x + ........ \infty$ in $x \in [-50 \pi, 50 \pi]$ is -
The number of solution of the equation $2\cos ({e^x}) = {5^x} + {5^{ - x}}$, are
Let $S=\left\{x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): 9^{1-\tan ^2 x}+9^{\tan ^2 x}=10\right\}$ and $\beta=\sum_{x \in S} \tan ^2\left(\frac{x}{3}\right)$, then $\frac{1}{6}(\beta-14)^2$ is equal to
If ${\sin ^2}\theta = \frac{1}{4},$ then the most general value of $\theta $ is