If ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ then the value of $\theta $ and $\phi $ are
$\theta = n\pi \pm \frac{\pi }{3},\,\phi = n\pi \pm \frac{\pi }{6}$
$\theta = n\pi - \frac{\pi }{3},\,\phi = n\pi - \frac{\pi }{6}$
$\theta = n\pi \pm \frac{\pi }{2},\,\phi = n\pi + \frac{\pi }{3}$
None of these
The number of values of $x$ in the interval $[0, 5\pi]$ satisfying the equation $3sin^2x\, \,-\,\, 7sinx + 2 = 0$ is
The equation $\sin x + \cos x = 2$has
Number of values of $x$ satisfying $2sin^22x = 2cos^28x + cos10x$ in $x \in \left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right]$ is-
Let $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\}$.
Then $\sum_{\theta \in S } \sin ^2\left(\theta+\frac{\pi}{4}\right)$ is equal to
If $12{\cot ^2}\theta - 31\,{\rm{cosec }}\theta + {\rm{32}} = {\rm{0}}$, then the value of $\sin \theta $ is