If ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ then the value of $\theta $ and $\phi $ are

  • A

    $\theta = n\pi \pm \frac{\pi }{3},\,\phi = n\pi \pm \frac{\pi }{6}$

  • B

    $\theta = n\pi - \frac{\pi }{3},\,\phi = n\pi - \frac{\pi }{6}$

  • C

    $\theta = n\pi \pm \frac{\pi }{2},\,\phi = n\pi + \frac{\pi }{3}$

  • D

    None of these

Similar Questions

If $\cos \,\alpha  + \cos \,\beta  = \frac{3}{2}$ and $\sin \,\alpha  + \sin \,\beta  = \frac{1}{2}$ and $\theta $ is the the arithmetic mean of $\alpha $ and $\beta $ , then $\sin \,2\theta  + \cos \,2\theta $ is equal to 

  • [JEE MAIN 2015]

The number of solution of the equation,$\sum\limits_{r = 1}^5 {\cos (r\,x)} $ $= 0$ lying in $(0, \pi)$ is :

If $4{\sin ^2}\theta + 2(\sqrt 3 + 1)\cos \theta = 4 + \sqrt 3 $, then the general value of $\theta $ is

$sin^{2n}x + cos^{2n}x$ lies between

Let $P = \left\{ {\theta :\sin \,\theta  - \cos \,\theta  = \sqrt 2 \,\cos \,\theta } \right\}$ and $Q = \left\{ {\theta :\sin \,\theta  + \cos \,\theta  = \sqrt {2\,} \sin \,\theta } \right\}$ be two sets. Then

  • [JEE MAIN 2016]