Let $S=\{x \in R: \cos (x)+\cos (\sqrt{2} x)<2\}$, then

  • [KVPY 2018]
  • A

    $S=\emptyset$

  • B

    $S$ is a non-empty finite set

  • C

    $S$ is an infinite proper subset of $R-\{0\}$

  • D

    $S=R-\{0\}$

Similar Questions

Find the principal and general solutions of the question $\tan x=\sqrt{3}$.

The numbers of solution $(s)$ of the equation $\left( {1 - \frac{1}{{2\,\sin x}}} \right){\cos ^2}\,2x\, = \,2\,\sin x\, - \,3\, + \,\frac{1}{{\sin x}}$ in $[0,4\pi ]$ is

The number of solutions of the equation $32^{\tan ^{2} x}+32^{\sec ^{2} x}=81,0 \leq x \leq \frac{\pi}{4}$ is :

  • [JEE MAIN 2021]

If $0 \le x \le \pi $ and ${81^{{{\sin }^2}x}} + {81^{{{\cos }^2}x}} = 30$, then $x =$

  • [JEE MAIN 2021]

Statement $-1:$ The number of common solutions of the trigonometric equations $2\,sin^2\,\theta - cos\,2\theta  = 0$ and $2 \,cos^2\,\theta - 3\,sin\,\theta  = 0$ in the interval $[0, 2\pi ]$ is two.

Statement $-2:$ The number of solutions of the equation, $2\,cos^2\,\theta  - 3\,sin\,\theta  = 0$ in the interval $[0, \pi ]$ is two.

  • [JEE MAIN 2013]