ધારોકે $X _{1}, X _{2}, \ldots, X _{18}$ એ $18$ અવલોકન છે કે જેથી $\sum_{ i =1}^{18}\left( X _{ i }-\alpha\right)=36 \quad$ અને $\sum_{i=1}^{18}\left(X_{i}-\beta\right)^{2}=90,$ જ્યાં $\alpha$ અને $\beta$ ભિન્ન વાસ્તવિક સંખ્યાઓ છે. જે આ અવલોકનોનું પ્રમાણિત વિચલન $1$ હોય, તો $|\alpha-\beta|$ નું મૂલ્ય ........ થાય. .

  • [JEE MAIN 2021]
  • A

    $4$

  • B

    $2$

  • C

    $3$

  • D

    $5$

Similar Questions

પ્રયોગના $5$  અલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $4 $ અને $5.2$  છે. જો આ અવલોકનો પૈકી ત્રણ $1, 2$ અને $6,$  હોય તો બાકીના અવલોકનો કયા હશે ?

જો પ્રત્યેક અવલોકન $x_{1}, x_{2}, \ldots ., x_{n}$ માં કોઈ ધન કે ત્રણ સંખ્યા $'a'$ ઉમેરવામાં આવે, તો સાબિત કરો કે વિચરણ બદલાતું નથી. 

પ્રથમ $n $ પ્રાકૃતિક સંખ્યાઓના વિચરણનો ચલનાંક  શોધો.

પ્રથમ $20$ પ્રાકૃતિક સંખ્યાઓનું વિચરણ શોધો.

ધારોકે નીચેના વિતરણ નું મધ્યક $\mu$ અને પ્રમાણિત વિચલન $\sigma$ છે. 

$X_i$ $0$ $1$ $2$ $3$ $4$ $5$
$f_i$ $k+2$ $2k$ $K^{2}-1$ $K^{2}-1$ $K^{2}-1$ $k-3$

 જ્યાં $\sum f_i=62$. જો $[x]$ એ મહત્તમ પૂર્ણાક $\leq x$ દર્શાવે,તો $\left[\mu^2+\sigma^2\right]=.......$

  • [JEE MAIN 2023]