$15$ સંખ્યાઓના એક ગણના મધ્યક અને વિચરણ અનુક્રમે $12$ અને $14$ છે.$15$ સંખ્યાઓના અન્ય એક ગણના મધ્યક અને વિચરણ અનુક્રમે $14$ અને $\sigma^2$ છે.બંને ગણની તમામ $30$ સંખ્યાઓનું વિયરણ જો $13$ હોય, તો $\sigma^2=........$
$9$
$12$
$11$
$10$
એક ડિઝાઇનમાં બનાવેલ વર્તુળોના વ્યાસ (મિમીમાં) નીચે આપ્યા છે :
વ્યાસ | $33-36$ | $37-40$ | $41-44$ | $45-48$ | $49-52$ |
વર્તુળોની સંખ્યા | $15$ | $17$ | $21$ | $22$ | $25$ |
વર્તુળોના વ્યાસનું પ્રમાણિત વિચલન અને મધ્યક વ્યાસ શોધો.
વિધાન $- 1 : $ પ્રથમ $n$ યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ $\frac{{{n^2}\, - \,\,1}}{4}$છે.
વિધાન $ - 2$ : પ્રથમ પ્રાકૃતિક સંખ્યાઓનો સરવાળો $\frac{{n(n\,\, + \,\,1)}}{2}$અને પ્રથમ $n$ પ્રાકૃતિક સંખ્યાઓના વર્ગનો સરવાળો $\frac{{n(n\, + \,\,1)\,(2n\, + \,\,1)}}{6}$ છે.
જો $X=\{\mathrm{x} \in \mathrm{N}: 1 \leq \mathrm{x} \leq 17\}$ અને $\mathrm{Y}=\{\mathrm{ax}+\mathrm{b}: \mathrm{x} \in \mathrm{X}$ and $\mathrm{a}, \mathrm{b} \in \mathrm{R}, \mathrm{a}>0\} .$ તથા $Y$ ના બધા ઘટકોનો મધ્યક અને વિચરણ અનુક્રમે $17$ અને $216$ હોય તો $a + b$ ની કિમત શોધો
ધારો કે $x_1, x_2 ……, x_n $ એ વિચલન $X$ વડે લીધેલા મૂલ્ય છે અને $y_1, y_2, …, y_n $ એ વિચલન $ Y $ વડે લીધેલા એવા મૂલ્યો છે કે જેથી $y_i = ax_i + b,$ કે જ્યાં $ i = 1, 2, ….., n$ થાય તો...
સાત અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $8$ અને $16$ છે જો $5$ અવલોકનો $2, 4, 10, 12, 14,$ હોય તો બાકી રહેલા બે અવલોકનોનો ગુણાકાર .......... થાય