ધારો કે $\alpha$ અને $\beta$ બે વાસ્તવિક સંખ્યાઓ છે કે જેથી $\alpha+\beta=1$ અને $\alpha \beta=-1 .$ જો કોઈક પૂર્ણાંક $n \geq 1$ માટે ધારો કે $p _{ n }=(\alpha)^{ n }+(\beta)^{ n },p _{ n -1}=11$ અને $p _{ n +1}=29$ હોય, તો $p _{ n }^{2}$ નું મૂલ્ય .... થાય.
$162$
$324$
$648$
$424$
જો $x$ એ સમીકરણ $\sqrt {2x + 1} - \sqrt {2x - 1} = 1, \left( {x \ge \frac{1}{2}} \right)$ નો ઉકેલ હોય તો $\sqrt {4{x^2} - 1} $ ની કિમત મેળવો.
જો $\sqrt {3{x^2} - 7x - 30} + \sqrt {2{x^2} - 7x - 5} = x + 5,\,$ તો $\,\,{\rm{x = \ldots }}..{\rm{ }}$
ધારોકે દ્રીધાત સમીકરણો $x^2-12 x+[x]+31=0$ અને $x^2-5|x+2|-4=0$ ના વાસ્તવિક બીજોની સંખ્યા અનુક્રમે $m$ અને $n$ છે, જ્યાં $[x]$ એ મહત્તમ પૂર્ણાક $\leq x$ દર્શાવે છે.તો $m^2+m n+n^2=.......$
જો $\alpha, \beta$ એ સમીકરણ $x^2-x-1=0$ ના બીજ હોય અને $\mathrm{S}_{\mathrm{n}}=2023 \alpha^{\mathrm{n}}+2024 \beta^{\mathrm{n}}$ હોય, તો :
સમીકરણ $x+1-2 \log _{2}\left(3+2^{x}\right)+2 \log _{4}\left(10-2^{-x}\right)=0$ ના ઉકેલનો સરવાળો મેળવો.