Let $\alpha$ and $\beta$ be two real numbers such that $\alpha+\beta=1$ and $\alpha \beta=-1 .$ Let $p _{ n }=(\alpha)^{ n }+(\beta)^{ n },p _{ n -1}=11$ and $p _{ n +1}=29$ for some integer $n \geq 1 .$ Then, the value of $p _{ n }^{2}$ is .... .

  • [JEE MAIN 2021]
  • A

    $162$

  • B

    $324$

  • C

    $648$

  • D

    $424$

Similar Questions

Let $x, y, z$ be positive reals. Which of the following implies $x=y=z$ ?

$I.$ $x^3+y^3+z^3=3 x y z$

$II.$ $x^3+y^2 z+y z^2=3 x y z$

$III.$ $x^3+y^2 z+z^2 x=3 x y z$

$IV.$ $(x+y+z)^3=27 x y z$

  • [KVPY 2015]

The number of distinct real roots of the equation $|\mathrm{x}||\mathrm{x}+2|-5|\mathrm{x}+1|-1=0$ is....................

  • [JEE MAIN 2024]

Let $\alpha$ and $\beta$ be the roots of $x^2-x-1=0$, with $\alpha>\beta$. For all positive integers $n$, define

$a_n=\frac{\alpha^n-\beta^n}{\alpha-\beta}, n \geq 1$

$b_1=1 \text { and } b_n=a_{n-1}+a_{n+1}, n \geq 2.$

Then which of the following options is/are correct?

$(1)$ $a_1+a_2+a_3+\ldots . .+a_n=a_{n+2}-1$ for all $n \geq 1$

$(2)$ $\sum_{n=1}^{\infty} \frac{ a _{ n }}{10^{ n }}=\frac{10}{89}$

$(3)$ $\sum_{n=1}^{\infty} \frac{b_n}{10^n}=\frac{8}{89}$

$(4)$ $b=\alpha^n+\beta^n$ for all $n>1$

  • [IIT 2019]

The smallest value of ${x^2} - 3x + 3$ in the interval $( - 3,\,3/2)$ is

If the graph of $y = ax^3 + bx^2 + cx + d$ is symmetric about the line $x = k$ then