मान लीजिये कि $a, b, c$ धनात्मक पूर्णांक हैं जो समीकरण $2^a+4^b+8^c=328$ को संतुष्ट करती हैं। इस स्थिति में $\frac{a+2 b+3 c}{a b c}$ का मान निम्न होगा :

  • [KVPY 2015]
  • A

    $\frac{1}{2}$

  • B

    $\frac{5}{8}$

  • C

    $\frac{17}{24}$

  • D

    $\frac{5}{6}$

Similar Questions

मान लें कि $x, y, z$ धनात्मक संख्याएँ इस प्रकार हैं कि $HCF (x, y, z)=1$ तथा $x^2+y^2=2 z^2$. तब निम्नलिखित में से कौन सा कथन सत्य है ?

$I$. $4,{ }^x$ को विभाजित करता है या $4, y$ को विभाजित करता है।

$II$. $3,{ }^{x+y}$ को विभाजित करता है या $3, x-y$ को विभाजित करता है।

$III$. $5,2\left(x^2-y^2\right)$ को विभाजित करता है।

  • [KVPY 2017]

असमिका ${x^2} - 4x < 12\,{\rm{ }}$ का हल होगा

यदि $a, b, c, d$ चार अलग संख्याएँ एक समुच्चय $\{1,2,3, \ldots, 9\}$ से चुनी जाती हैं, तब $\frac{a}{b}+\frac{c}{d}$ का न्यूनतम मान होगा

  • [KVPY 2017]

समीकरण $2{x^5} - 14{x^4} + 31{x^3} - 64{x^2} + 19x + 130 = 0$ का एक मूल होगा  

समीकरणों $6 x+4 y+z=200$ एवं $x+y+z=100$ के अरुणात्मक $(non-negative)$ पूर्णांक हलों की संख्या क्या होगी ?

  • [KVPY 2019]