ધારો કે $F_{1}(A, B, C)=(A \wedge \sim B) \vee[\sim C \wedge(A \vee B)] \vee \sim A$ અને $F _{2}( A , B )=( A \vee B ) \vee( B \rightarrow \sim A )$ એ બે તાર્કિક અભિવ્યક્તિઓ છે. તો :
$F _{1}$ અને $F _{2}$ બંને નિત્યસત્ય છે.
$F _{1}$ નિત્યસત્ય છે પરંતુ $F _{2}$નિત્યસત્ય નથી.
$F _{1}$ નિત્યસત્ય નથી પરંતુ $F _{2}$ નિત્યસત્ય છે.
$F _{1}$ અને $F _{2}$ બંને નિત્યસત્ય નથી.
$((p \wedge q) \Rightarrow(r \vee q)) \wedge((p \wedge r) \Rightarrow q)$ નિત્યસત્ય થાય તેવા $r \in\{p, q, \sim p , \sim q \}$ ના મુલ્યોની સંખ્યા $..............$ છે.
આપેલ વિધાન ધ્યાનથી જુઓ અને તેનું નિષેધ કરો.
" મેચ તોજ રમાશે જો વાતાવરણ સારું હશે અને મેદાન ભીનું નહીં હોય."
નીચેના વિધાન જુઓ:-
$P :$ રામુ હોશિયાર છે
$Q $: રામુ પૈસા વાળો છે
$R:$ રામુ અપ્રમાણિક છે
વિધાનની નિષેધ કરો : - "રામુ હોશિયાર અને પ્રમાણિક તો અને તોજ હોય જો રામુ પૈસા વાળો ન હોય "
નીચેનામાંથી કોનું સત્યાર્થતાનું મૂલ્ય નિત્ય સત્ય થાય ?
વિધાન $( p \rightarrow( q \rightarrow p )) \rightarrow( p \rightarrow( p \vee q ))$ એ