જો $m$ અને $M$ એ $\left|\begin{array}{ccc}\cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x\end{array}\right|$. ની અનુક્રમે ન્યૂનતમ અને મહત્તમ કિમત દર્શાવતા હોય તો $( m , M )$ ની કિમત શોધો
$(-3,-1)$
$(-4,-1)$
$(1,3)$
$(-3,3)$
સમીકરણની સંહતિ $x + y + z = \lambda ,$ $5x - y + \mu z = 10$, $2x + 3y - z = 6$ ને એકાકી ઉકેલ ધરાવે તેનો આધાર . . . પર છે.
$f(x)=\left|\begin{array}{ccc} \sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x \end{array}\right|, x \in R$ નું મહત્તમ મૂલ્ય ..... છે.
$k $ ની કેટલી કિંમતો માટે સમીકરણ સંહતી $\left( {k + 1} \right)x + 8y = 4k\;,\;kx + \left( {k + 3} \right)y $$= 3k - 1$ ને એક પણ ઉકેલ નથી.
જો $a,b,c$ એ સમાંતર શ્રેણીના ${p^{th}},{q^{th}}{r^{th}}$ માં પદ હોય તો ,$\left| {\,\begin{array}{*{20}{c}}a&p&1\\b&q&1\\c&r&1\end{array}\,} \right| = $
સુરેખ સમીકરણ સંહતિ $a x+y+z=1$, $x+a y+z=1, x+y+a z=\beta$ માટે,નીચેના પૈકી કયું વિધાન સાચું નથી?