माना $X=\{x \in N : 1 \leq x \leq 17\}$ और $Y=\{a x+b: x \in X$ और $a, b \in R , a>0\}$ यदि $Y$ के अवयव का माध्य और प्रसरण क्रमश $17$ और $216$ है तो $a+b$ बराबर है
$-7$
$7$
$9$
$-27$
माना $5$ प्रेक्षणों $x_1, x_2, x_3, x_4, x_5$ का माध्य तथा प्रसरण क्रमश: $\frac{24}{5}$ तथा $\frac{194}{25}$ है। यदि प्रथम चार प्रेक्षणों का माध्य तथा प्रसरण क्रमश: $\frac{7}{2}$ तथा $a$ है, तो $\left(4 a+x_5\right)$ है:
माना छः संख्याएं $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \mathrm{a}_4, \mathrm{a}_5, \mathrm{a}_6$ समान्तर श्रेणी में है और $\mathrm{a}_1+\mathrm{a}_3=10$ है। यदि इन छ: संख्याओं का माध्य $\frac{19}{2}$ है और इनका प्रसरण $\sigma^2$ है, तब $8 \sigma^2$ का मान है :
$7$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ हैं यदि एक प्रेक्षण $14$ को हटाने पर शेष $6$ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $a$ तथा $b$ है, तो $a+3 b-5$ बराबर है____________.
माना बंटन
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
जहाँ $\sum \mathrm{f}_{\mathrm{i}}=62$ है, का माध्य $\mu$ तथा मानक विचलन $\sigma$ हैं। यदि $[\mathrm{x}]$ महत्तम पूर्णांक $\leq \mathrm{x}$ है, तो $\left[\mu^2+\sigma^2\right]$ बराबर है
छ: प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $8$ तथा $4$ हैं। यदि प्रत्येक प्रेक्षण को तीन से गुणा कर दिया जाए तो परिणामी प्रेक्षणों का माध्य व मानक विचलन ज्ञात कीजिए।