Let $A$ and $B$ be independent events with $P(A)=0.3$ and $P(B)=0.4$. Find $P(A \cup B)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that, $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$\Rightarrow $ $P(A \cup B)=0.3+0.4-0.12=0.58$

Similar Questions

In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student has opted neither $NCC$ nor $NSS$.

Two dice are thrown simultaneously. The probability that sum is odd or less than $7$ or both, is

Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that One of them is black and other is red.

$A$ and $B$ are events such that $P(A)=0.42$,  $P(B)=0.48$ and $P(A$ and $B)=0.16 .$ Determine $P ($ not $B).$

$A$ and $B$ are events such that $P(A)=0.42$,  $P(B)=0.48$ and $P(A$ and $B)=0.16 .$ Determine $P ($ not $A ).$