Two dice are thrown simultaneously. The probability that sum is odd or less than $7$ or both, is
$\frac{2}{3}$
$\frac{1}{2}$
$\frac{3}{4}$
$\frac{1}{3}$
From the employees of a company, $5$ persons are selected to represent them in the managing committee of the company. Particulars of five persons are as follows :
S.No. | Name | Sex | Age in years |
$1.$ | Harish | $M$ | $30$ |
$2.$ | Rohan | $M$ | $33$ |
$3.$ | Sheetal | $F$ | $46$ |
$4.$ | Alis | $F$ | $28$ |
$5.$ | Salim | $M$ | $41$ |
A person is selected at random from this group to act as a spokesperson. What is the probability that the spokesperson will be either male or over $35$ years?
If $A$ and $B$ are two independent events, then the probability of occurrence of at least one of $\mathrm{A}$ and $\mathrm{B}$ is given by $1 -\mathrm{P}\left(\mathrm{A}^{\prime}\right) \mathrm{P}\left(\mathrm{B}^{\prime}\right)$
In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student opted for $NCC$ or $NSS$.
Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that Only one of them will qualify the examination.
Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that One of them is black and other is red.