$A$ and $B$ are events such that $P(A)=0.42$,  $P(B)=0.48$ and $P(A$ and $B)=0.16 .$ Determine $P ($ not $B).$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P ( A )=0.42$, $P ( B )=0.48$, $P ( A$ and  $B )=0.16$

$P ($ not  $B )=1- P ( B )=1-0.42=0.52$

Similar Questions

A card is drawn from a pack of cards. Find the probability that the card will be a queen or a heart

Let $A$ and $B$ be independent events with $P(A)=0.3$ and $P(B)=0.4$. Find  $P(A \cap B)$

Two events $A$ and $B$ will be independent, if

Let two fair six-faced dice $A$ and $B$ be thrown simultaneously. If  $E_1$ is the event that die $A$ shows up four, $E_2 $ is the event that die $B$ shows up two and $E_3$ is the event that the sum of numbers on both dice is odd, then which of the following statements is NOT true $?$

  • [JEE MAIN 2016]

If $A$ and $B$ are two independent events such that $P(A) > 0.5,\,P(B) > 0.5,\,P(A \cap \bar B) = \frac{3}{{25}},\,P(\bar A \cap B) = \frac{8}{{25}}$ , then $P(A \cap B)$ is