ઘટનાઓ $E$ અને $F$ માટે $\mathrm{P}(\mathrm{E})=\frac{3}{5}, \mathrm{P}(\mathrm{F})$ $=\frac{3}{10}$ અને $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{5} .$  છે. $E$ અને $F$ નિરપેક્ષ છે ? 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P(E)=\frac{3}{5}, \,P(F)=\frac{3}{10}$ and $P(E F)=P(E \cap F)=\frac{1}{5}$

$P(E) .P(F)=\frac{3}{5} \times \frac{3}{10}=\frac{9}{50} \neq \frac{1}{5}$

$\Rightarrow P(E). P(F) \neq P(E F)$

Therefore,  $\mathrm{E}$ and $\mathrm{F}$ are not independent.

Similar Questions

કોઇ બે નિરપેક્ષ ઘટનાઓ ${E_1}$ અને ${E_2},$ માટે $P\,\{ ({E_1} \cup {E_2}) \cap ({\bar E_1} \cap {\bar E_2})\} $ એ 

  • [IIT 1991]

ચાર વ્યક્તિઓ ટાર્ગેટને તાકી શકે તેની સંભાવના અનુક્રમે $\frac{1}{2},\frac{1}{3},\frac{1}{4}$ અને  $\frac {1}{8}$ છે. જો બધા સ્વતંત્ર રીતે ટાર્ગેટને તકવાનો પ્રયત્ન કરે છે તો ટાર્ગેટ ને તાકી શકાય તેની સંભાવના મેળવો.

  • [JEE MAIN 2019]

જો $A$ અને $B$ બે ઘટનાઓ છે કે જેમાં $P\,(A) = 0.3$ અને $P\,(A \cup B) = 0.8$. જો $A$ અને  $B$ એ નિરપેક્ષ ઘટનાઓ હોય,તો $P(B) = $

  • [IIT 1990]

જો $A$ અને $B$ નિરપેક્ષ ઘટનાઓ હોય અને $P(A)=\frac{3}{5}$ અને$P(B)=\frac{1}{5}$ હોય, તો $P(A \cap B)$ શોધો. 

એક વિદ્યાર્થીની અંતિમ પરીક્ષાના અંગ્રેજી અને હિંદી બન્ને વિષયો પાસ કરવાની સંભાવના $0.5$ છે અને બંનેમાંથી કોઈ પણ વિષય પાસ ન કરવાની સંભાવના $0.1$ છે. જો અંગ્રેજીની પરીક્ષા પાસ કરવાની સંભાવના $0.75$ હોય, તો હિંદીની પરીક્ષા પાસ કરવાની સંભાવના શું છે?