ઘટનાઓ $E$ અને $F$ માટે $\mathrm{P}(\mathrm{E})=\frac{3}{5}, \mathrm{P}(\mathrm{F})$ $=\frac{3}{10}$ અને $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{5} .$  છે. $E$ અને $F$ નિરપેક્ષ છે ? 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P(E)=\frac{3}{5}, \,P(F)=\frac{3}{10}$ and $P(E F)=P(E \cap F)=\frac{1}{5}$

$P(E) .P(F)=\frac{3}{5} \times \frac{3}{10}=\frac{9}{50} \neq \frac{1}{5}$

$\Rightarrow P(E). P(F) \neq P(E F)$

Therefore,  $\mathrm{E}$ and $\mathrm{F}$ are not independent.

Similar Questions

એક પાસાને ત્રણ વખત ફેંકવામાં આવે છે. ઓછામાં ઓછી એક વખત અયુગ્મ સંખ્યા મળે તેની સંભાવના શોધો.

જો $ P(A) = 0.25, P(B)= 0.50 $ અને  $P(A \,\cap\,B) = 0.14 $ હોય, તો $P(A\,\, \cap \,\,\overline B )$બરાબર શું થાય ?

જેના પર $1$ થી $100$ નંબર લખેલા છે એવી લોટરીની $100$ ટિકિટો છે. યાર્દચ્છિક રીતે એક ટિકિટ ખેંચતા તેના પરનો નંબર $3$ અથવા $5$ નો ગુણક હોય તેની સંભાવના મેળવો.

એક સમતોલ પાસાને એક વખત ઉછાળતાં ઉપરની બાજુએ $3$ થી મોટો પૂર્ણાક  મળે તે ઘટના અને $5$ થી નાનો પૂર્ણાક  મળે તે ઘટના $B$ છે. $P(A \cup B) = .....$

એક સમતોલ સિક્કા ને ઉછાળવામાં આવે છે .  જો છાપ આવે તો બે સમતોલ પાસાને ઉછાળવામાં આવે છે અને તેના પરના અંકોનો સરવાળો નોધવામાં આવે છે અને જો કાંટ આવે તો સરખી રીતે છીપેલા નવ પત્તા કે જેના પર $1, 2, 3,….., 9$ અંક લખેલા હોય તેમાથી એક પત્તું પસંદ કરી તે તેના પરનો અંક નોધવામાં આવે છે તો નોધાયેલા અંક  $7$ અથવા $8$ હોય તેની સંભાવના મેળવો.

  • [JEE MAIN 2019]