જેના પર $1$ થી $100$ નંબર લખેલા છે એવી લોટરીની $100$ ટિકિટો છે. યાર્દચ્છિક રીતે એક ટિકિટ ખેંચતા તેના પરનો નંબર $3$ અથવા $5$ નો ગુણક હોય તેની સંભાવના મેળવો.
$1/5$
$33/100$
$47/100$
$3/50$
બે પાસા સ્વતંત્ર રીતે ઉછાળવામાં આવે છે. ધારો કે પહેલા પાસા પર આવેલ સંખ્યા એ બીજ પાસા પર આવેલ સંંખ્યાથી નાની હોય તે ઘટના $A$ છે, તથા પ્રથમ પાસા ૫ર યુગ્મ સંખ્યા આવે અને બીજા પાસા પર અયુગ્મ સંખ્યા આવે તે ઘટના $B$ છે.વધુમાં ધારોકે પ્રથમ પાસા પર અયુગ્મ સંખ્યા આવે અને બીજા પાસા પર યુગ્મ સંખ્યા આવે તે ઘટના $C$ છે.તો,:
ત્રણ ઘટનાઓ $A , B$ અને $C$ ની સંભાવના અનુક્રમે $P ( A )=0.6, P ( B )=0.4$ અને $P ( C )=0.5$ આપેલ છે જો $P ( A \cup B )=0.8, P ( A \cap C )=0.3, P ( A \cap B \cap$ $C)=0.2, P(B \cap C)=\beta$ અને $P(A \cup B \cup C)=\alpha$ જ્યાં $0.85 \leq \alpha \leq 0.95,$ હોય તો $\beta$ ની કિમત ........ અંતરાલમાં રહે છે
જો $A$ અને $B$ એ કોઈ ઘટનાઓ હોય તો, તેમાંથી ફક્ત એક જ ઘટના બનવાની શક્યતા કેટલી?
આપેલ ઘટનાઓ $A$ અને $B$ માટે $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ અને $\mathrm{P}(\mathrm{B})=p .$ આપેલ છે. જો ઘટનાઓ નિરપેક્ષ હોય તો $p$ માં શોધો.
ત્રણ ઘટનાઓ $A,B $ અને $C$ માટે $P(A $ અથવા $B$ માંથી ફકત એક બને) $ = P(B$ અથવા $C$ માંથી ફકત એક બને $)= P( A$ અથવા $C$ માંથી ફકત એક બને) =$\;\frac{1}{4}$ તથા $P$ (તમામ ત્રણેય ઘટનાઓ એક સાથે બને) = $\frac{1}{{16}}$ તો ઓછામાં ઓછી એક ઘટના બને તેની સંભાવના . . . છે. .