Let $\mathrm{E}$ and $\mathrm{F}$ be events with $\mathrm{P}(\mathrm{E})=\frac{3}{5}, \mathrm{P}(\mathrm{F})$ $=\frac{3}{10}$ and $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{5} .$ Are $\mathrm{E}$ and $\mathrm{F}$ independent ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P(E)=\frac{3}{5}, \,P(F)=\frac{3}{10}$ and $P(E F)=P(E \cap F)=\frac{1}{5}$

$P(E) .P(F)=\frac{3}{5} \times \frac{3}{10}=\frac{9}{50} \neq \frac{1}{5}$

$\Rightarrow P(E). P(F) \neq P(E F)$

Therefore,  $\mathrm{E}$ and $\mathrm{F}$ are not independent.

Similar Questions

Let $A$ and $B$ be two events such that the probability that exactly one of them occurs is $\frac{2}{5}$ and the probability that $A$ or $B$ occurs is $\frac{1}{2}$ then the probability of both of them occur together is

  • [JEE MAIN 2020]

One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $\mathrm{E}$ and $\mathrm{F}$ independent ?

$E:$ 'the card drawn is a spade'

$F:$ 'the card drawn is an ace'

If $A$ and $B$ are two mutually exclusive events, then $P\,(A + B) = $

If $P\,({A_1} \cup {A_2}) = 1 - P(A_1^c)\,P(A_2^c)$ where $c$ stands for complement, then the events ${A_1}$ and ${A_2}$ are

 $\mathrm{A}$ die is thrown. If $\mathrm{E}$ is the event $'$ the number appearing is a multiple of $3'$ and $F$ be the event $'$ the number appearing is even $^{\prime}$ then find whether $E$ and $F$ are independent ?