Let $\mathrm{E}$ and $\mathrm{F}$ be events with $\mathrm{P}(\mathrm{E})=\frac{3}{5}, \mathrm{P}(\mathrm{F})$ $=\frac{3}{10}$ and $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{5} .$ Are $\mathrm{E}$ and $\mathrm{F}$ independent ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P(E)=\frac{3}{5}, \,P(F)=\frac{3}{10}$ and $P(E F)=P(E \cap F)=\frac{1}{5}$

$P(E) .P(F)=\frac{3}{5} \times \frac{3}{10}=\frac{9}{50} \neq \frac{1}{5}$

$\Rightarrow P(E). P(F) \neq P(E F)$

Therefore,  $\mathrm{E}$ and $\mathrm{F}$ are not independent.

Similar Questions

One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $\mathrm{E}$ and $\mathrm{F}$ independent ?

$E:$ 'the card drawn is a spade'

$F:$ 'the card drawn is an ace'

The probabilities that $A$ and $B$ will die within a year are $p$ and $q$ respectively, then the probability that only one of them will be alive at the end of the year is

A party of $23$ persons take their seats at a round table. The odds against two persons sitting together are

Given two independent events $A$ and $B$ such that $P(A) $ $=0.3, \,P(B)=0.6$ Find $P(A$ and $B)$.

Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that both balls are red.