એક સમતોલ સિક્કા ને ઉછાળવામાં આવે છે .  જો છાપ આવે તો બે સમતોલ પાસાને ઉછાળવામાં આવે છે અને તેના પરના અંકોનો સરવાળો નોધવામાં આવે છે અને જો કાંટ આવે તો સરખી રીતે છીપેલા નવ પત્તા કે જેના પર $1, 2, 3,….., 9$ અંક લખેલા હોય તેમાથી એક પત્તું પસંદ કરી તે તેના પરનો અંક નોધવામાં આવે છે તો નોધાયેલા અંક  $7$ અથવા $8$ હોય તેની સંભાવના મેળવો.

  • [JEE MAIN 2019]
  • A

    $\frac{{13}}{{36}}$

  • B

    $\frac{{15}}{{72}}$

  • C

    $\frac{{19}}{{72}}$

  • D

    $\frac{{19}}{{36}}$

Similar Questions

એક સમતોલ પાસાને બે વખત ફેંકવામાં આવે છે. ઘટના $A$, ‘પ્રથમ પ્રયત્ન અયુગ્મ સંખ્યા મળે” અને ઘટના $B$, “બીજા પ્રયત્ન અયુગ્મ સંખ્યા મળે તેમ હોય, તો ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે કે કેમ તે ચકાસો. 

નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો : 

$P(A)$ $P(B)$ $P(A \cap B)$ $P (A \cup B)$
$\frac {1}{3}$ $\frac {1}{5}$ $\frac {1}{15}$  ........

જો ઘટનાઓ $A$ અને $B$ માટે $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ અને $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ હોય, તો $P(A -$ નહિ અને $B-$ નહિ) શોધો. 

એક અસમતોલ સિક્કો ઉછાળવામાં આવે છે.જો છાપ આવે તો બે અસમતોલ પાસાને ઉછાળીને તેના પરના અંકોનેા સરવાળો નોધવામાં આવે છે.અને જો કાંટો આવે તો સરખી રીતે છીપેલાં $11$ પત્તાં કે જેની પર $2,3,4,…,12$ અંકો લખેલો છે તેમાંથી એક પત્તું પસંદ કરવામાં આવે છે અને તેના પરનો અંક નોંધવામાં આવે છે.તો નોધાયેલી સંખ્યા $7$ અથવા $8$ હોય,તેની સંભાવના મેળવો.

  • [IIT 1994]

બે પાસા સ્વતંત્ર રીતે ઉછાળવામાં આવે છે. ધારો કે પહેલા પાસા પર આવેલ સંખ્યા એ બીજ પાસા પર આવેલ સંંખ્યાથી નાની હોય તે ઘટના $A$ છે, તથા પ્રથમ પાસા ૫ર યુગ્મ સંખ્યા આવે અને બીજા પાસા પર અયુગ્મ સંખ્યા આવે તે ઘટના $B$ છે.વધુમાં ધારોકે પ્રથમ પાસા પર અયુગ્મ સંખ્યા આવે અને બીજા પાસા પર યુગ્મ સંખ્યા આવે તે ઘટના  $C$ છે.તો,:

  • [JEE MAIN 2023]