माना धनात्मक पदों की एक गुणोत्तर श्रेढ़ी का $n$ वां पद $a _{ n }$ है। यदि $\sum_{n=1}^{100} a_{2 n+1}=200$ तथा $\sum_{n=1}^{100} a_{2 n}=100$, तो $\sum_{ n =1}^{200} a _{ n }$ बराबर है
$225$
$175$
$300$
$150$
कार्तीय तल में $C_1, C_2, \ldots, C_n$, जहां $n \geq 3$, नामक वृत्त दिये गये हैं जिनकी त्रिज्या क्रमानुसार $r_1, r_2, \ldots, r_n$ है। प्रत्येक $i$, $1 \leq i \leq n-1$ के लिए, वृत्त $C_i$ तथा $C_{i+1}$ एक दूसरे को बाह्य रूप से छूते हैं। यदि $x$-अक्ष तथा रेखा $y=2 \sqrt{2} x+10$ दोनों ही दिये गए सारे वृत्तों की स्पर्श रेखाएँ है तो क्रमानुसार सूची $r_1, r_2, \ldots, r_n$
यदि $3,9, 21$ प्रत्येक में $x$ जोड़ने पर परिणामी संख्याएँ गुणोत्तर श्रेणी में हो जाती हैं, तो $x$ का मान होगा
यदि किसी गुणोत्तर श्रेणी का $4$ वाँ, $10$ वाँ तथा $16$ वाँ पद क्रमश: $x, y$ तथा $z$ हैं, तो सिद्ध कीजिए कि $x, y, z$ गुणोत्तर श्रेणी में हैं।
एक गुणोत्तर श्रेढ़ी में यदि पहले $5$ पदों के योग का उनके व्युत्क्रमों के योग से अनुपात $49$ है तथा इसके पहले तथा तीसरे पदों का योग $35$ है, तो इस गुणोत्तर श्रेढ़ी का प्रथम पद है
माना $x _1, X _2, x _3, \ldots, x _{20}$ एक गुणोत्तर श्रेढ़ी में हैं, जिसमें $x _1=3$ तथा सार्व अनुपात $\frac{1}{2}$ है। प्रत्येक $x _{ i }$ की जगह $\left( x _{ i }- i \right)^2$ लेकर नये आंकड़ें बनाए जाते हैं। यदि नये आंकड़ों का माध्य $\overline{ x }$ है तो महत्तम पूर्णाक $\leq \overline{ x }$ है $..........$ I