माना धनात्मक पदों की एक गुणोत्तर श्रेढ़ी का $n$ वां पद $a _{ n }$ है। यदि $\sum_{n=1}^{100} a_{2 n+1}=200$ तथा $\sum_{n=1}^{100} a_{2 n}=100$, तो $\sum_{ n =1}^{200} a _{ n }$ बराबर है
$225$
$175$
$300$
$150$
यदि किसी गुणोत्तर श्रेणी का $5$ वाँ पद $\frac{1}{3}$हो एवं $9$ वाँ पद $\frac{{16}}{{243}}$ हो, तो चौथा पद होगा
अनुक्रम $8,88,888,8888 \ldots$ के $n$ पदों का योग ज्ञात कीजिए
यदि धनात्मक पदों की एक गुणोत्तर श्रेढ़ी के दूसरे, तीसरे तथा चौथे पदों का योगफल $3$ है तथा इसके छठे, सातवें और आठवें पदों का योगफल $243$ है, तो इस गुणोत्तर श्रेढ़ी के प्रथम $50$ पदों का योगफल है
यदि किसी गुणोत्तर श्रेणी का दसवां पद $9$ तथा चौथा पद $4$ हो, तो उसका सातवां पद है
यदि किसी गुणोत्तर श्रेणी का प्रथम तथा $n$ वाँ पद क्रमशः $a$ तथा $b$ हैं, एवं $P , n$ पदों का गुणनफल हो, तो सिद्ध कीजिए कि $P ^{2}=(a b)^{n}$