माना धनात्मक पदों की एक गुणोत्तर श्रेढ़ी का $n$ वां पद $a _{ n }$ है। यदि $\sum_{n=1}^{100} a_{2 n+1}=200$ तथा $\sum_{n=1}^{100} a_{2 n}=100$, तो $\sum_{ n =1}^{200} a _{ n }$ बराबर है

  • [JEE MAIN 2020]
  • A

    $225$

  • B

    $175$

  • C

    $300$

  • D

    $150$

Similar Questions

ऐसी $3$ संख्याएँ ज्ञात कीजिए जिनको $1$ तथा $256$ के बीच रखने पर प्राप्त अनुक्रम एक गुणोत्तर श्रेणी बन जाए।

यदि $a,\;b,\;c,\;d$ भिन्न वास्तविक संख्यायें ऐसी हों कि $({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0$ हो, तब $a,\;b,\;c,\;d$ होंगे

  • [IIT 1987]

यदि $y = x - {x^2} + {x^3} - {x^4} + ......\infty $, तो $x$ का मान होगा

यदि अनन्त पदों वाली किसी गुणोत्तर श्रेणी का योगफल $9$ तथा प्रथम दो पदों का योगफल $5$ हो, तो सार्वनिष्पति होगी

श्रेणी $(32)(32) 1/6(32)1/36 ...... $ अनन्त पदों तक का गुणनफल है