અહી $a_{n}$ એ ધન સમગુણોતર શ્રેણીનું  $n^{\text {th }}$ મુ પદ દર્શાવે છે .  જો $\sum\limits_{n=1}^{100} a_{2 n+1}=200$ અને  $\sum\limits_{n=1}^{100} a_{2 n}=100,$ તો  $\sum\limits_{n=1}^{200} a_{n}$ મેળવો..

  • [JEE MAIN 2020]
  • A

    $225$

  • B

    $175$

  • C

    $300$

  • D

    $150$

Similar Questions

એક સમગુણોત્તર શ્રેણીનાં બધાં પદ ધન છે. તેનું દરેક પદ, તે પદ પછીનાં બે પદના સરવાળા જેટલું હોય, તો આ શ્રેણીનો સામાન્ય ગુણોત્તર.... હશે.

જો $p, q, r $ કોઇ સમગુણોત્તર શ્રેણીમાં હોય અને $ a, b, c $ કોઇ અન્ય સમગુણોત્તર શ્રેણીમાં હોય, તો $cp, bq $ અને $ar$  એ......

જો સમગુણોત્તર શ્રેણીની $(p + q)^{th}$ મું પદ $m$ અને $(p - q)^{th}$ મું પદ $n$ હોય તો $p^{th}$ મું પદ શું હોય?

જો ${{\text{a}}_{\text{1}}}{\text{, }}{{\text{a}}_{\text{2}}}{\text{, .......... }}{{\text{a}}_{{\text{50}}}}{\text{ }}$ સમગુણોત્તર શ્રેણીમાં હોય તો,$\frac{{{a_1} - {a_3} + {a_5} - ..... + {a_{49}}}}{{{a_2} - {a_4} + {a_6} - .... + {a_{50}}}} = ........$

ધારો કે $\alpha$ અને $\beta$ એ સમીકરણ $p x^2+q x-r=0$ નાં બીજ છે, જ્યાં $p \neq 0$.જે $p, q$ અને $r$ એ એક અચળ ન હોય તેવી ગુણોત્તર શ્રેણી ($G.P.$) ના ક્રમિક પદો હોય અને $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4}$ હોય, તો $(\alpha-\beta)^2$ નું મૂલ્ય .............. છે.

  • [JEE MAIN 2024]