અહી $a_{n}$ એ ધન સમગુણોતર શ્રેણીનું $n^{\text {th }}$ મુ પદ દર્શાવે છે . જો $\sum\limits_{n=1}^{100} a_{2 n+1}=200$ અને $\sum\limits_{n=1}^{100} a_{2 n}=100,$ તો $\sum\limits_{n=1}^{200} a_{n}$ મેળવો..
$225$
$175$
$300$
$150$
સમગુણોત્તર શ્રેણીમાં ત્રીજા અને ચોથા પદનો સરવાળો $60$ અને તે શ્રેણીના પ્રથમ ત્રણ પદોનો ગુણાકાર $1000$ છે. જો સમગુણોત્તર શ્રેણીનું પ્રથમ પદ ધન હોય તો સાતમું પદ મેળવો ?
${{(0.2)}^{{{\log }_{\sqrt{5}}}\left( \frac{\text{1}}{\text{4}}\,+\,\frac{\text{1}}{\text{8}}\,+\,\frac{\text{1}}{\text{16}}\,+\,.....\,\infty \right)}}$ નું મૂલ્ય:
$0<\mathrm{c}<\mathrm{b}<\mathrm{a}$ માટે , જો $(\mathrm{a}+\mathrm{b}-2 \mathrm{c}) \mathrm{x}^2+(\mathrm{b}+\mathrm{c}-2 \mathrm{a}) \mathrm{x}$ $+(c+a-2 b)=0$ અને $\alpha \neq 1$ એ એક બીજ હોય તો આપલે પૈકી બે વિધાન પૈકી
$(I)$ જો $\alpha \in(-1,0)$, હોય તો $\mathrm{b}$ એ $\mathrm{a}$ અને $\mathrm{c}$ નો સમગુણોતર મધ્યક બની શકે નહીં.
$(II)$ જો $\alpha \in(0,1)$ હોય તો $\mathrm{b}$ એ $a$ અને $c$ નો સમગુણોતર મધ્યક બની શકે.
જો સમગુણોત્તર શ્રેણીના દ્વિતીય, તૃતીય અને ચતુર્થ ધન પદોનો સરવાળો $3$ અને તેનો છઠ્ઠું, સાતમું અને આઠમા પદોનો સરવાળો $243$ હોય તો આ શ્રેણીમાં પ્રથમ $50$ પદો સુધીનો સરવાળો કેટલો થાય ?
જો $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0),$ તો સાબિત કરો કે $a,b,c$ અને $d$ સમગુણોત્તર શ્રેણીમાં છે.