$\overrightarrow A = \hat iA\,\cos \theta + \hat jA\,\sin \theta $ જે સદીશ છે બીજો સદીશ $\overrightarrow B $ જે $\overrightarrow A$ ને લંબ હોય તો .... થાય.
$\hat i\,B\,\cos \theta + j\,B\sin \theta $
$\hat i\,B\,\sin \theta + j\,B\cos \theta $
$\hat i\,B\,\sin \theta - j\,B\cos \theta $
$\hat i\,B\,\cos \theta - j\,B\sin \theta $
અહી બે સદીશો $\mathop A\limits^ \to \,\, = \,\,3\hat i\,\, + \;\,\hat j\,$ અને $\mathop B\limits^ \to \,\, = \,\,\hat j\,\, + \,2\hat k$ આપેલ છે. આ બે સદીશો માટે $\mathop A\limits^ \to $ અને $\mathop B\limits^ \to $ બંને લંબ હોય તો એકમ સદિશ શોધો.
$(\vec{M} \times \vec{N})$ અને $(\vec{N} \times \vec{M})$ સદિશો વચ્ચેનો ખૂણો શું થાય?
જો $\mathop {\,{\text{A}}}\limits^ \to \,\, \times \;\,\mathop {\text{B}}\limits^ \to \,\, = \,\,\mathop 0\limits^ \to \,$ અને $\mathop {\,{\text{B}}}\limits^ \to \,\, \times \;\,\mathop {\text{C}}\limits^ \to \,\, = \,\,\mathop 0\limits^ \to $ હોય તો $\mathop {\,{\text{A}}}\limits^ \to \,$ અને $\mathop {\text{C}}\limits^ \to $ વચ્ચેનો ખૂણો ક્યો હશે ?
બે સદિશો $\overrightarrow A = 2\hat i + 4\hat j + 4\hat k$ અને $\overrightarrow B = 4\hat i + 2\hat j - 4\hat k$ વચ્ચેનો ખૂણો ....... $^o$ મેળવો.