$\left| {\,\begin{array}{*{20}{c}}1&a&b\\{ - a}&1&c\\{ - b}&{ - c}&1\end{array}\,} \right| = $
$1 + {a^2} + {b^2} + {c^2}$
$1 - {a^2} + {b^2} + {c^2}$
$1 + {a^2} + {b^2} - {c^2}$
$1 + {a^2} - {b^2} + {c^2}$
જો $k > 0$ માટે બિંદુઓ $(2k, k), (k, 2k)$ અને $(k, k)$ દ્વારા રચાતા ત્રિકોણનું ક્ષેત્રફળ $18$ એકમ હોય તો ત્રિકોણનું મધ્યકેન્દ્ર મેળવો.
$\Delta ABC$ માં , જો $\left| {\,\begin{array}{*{20}{c}}1&a&b\\1&c&a\\1&b&c\end{array}\,} \right| = 0$, તો ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C = $
સમીકરણોની જોડ $12x + by + cz = 0$ ; $ax + 24y + cz = 0$ ; $ax + by + 36z = 0$ . (કે જ્યાં $a$ , $b$ , $c$ એ વાસ્તવિક સંખ્યા છે કે જેથી $a \ne 12$ , $b \ne 24$ , $c \ne 36$ ). જો સમીકરણો ની જોડ સુસંગત હોય અને $z \ne 0$ હોય તો $\frac{1}{{a - 12}} + \frac{2}{{b - 24}} + \frac{3}{{c - 36}}$ મેળવો.
સમીકરણની સંહતિ $x + y + z = 2$, $2x + y - z = 3,$ $3x + 2y + kz = 4$ એ એકાકી ઉકેલ હોય તો . . . .
$\left| {\,\begin{array}{*{20}{c}}1&{\cos (\alpha - \beta )}&{\cos \alpha }\\{\cos (\alpha - \beta )}&1&{\cos \beta }\\{\cos \alpha }&{\cos \beta }&1\end{array}\,} \right|=$