$\left| {\,\begin{array}{*{20}{c}}1&a&b\\{ - a}&1&c\\{ - b}&{ - c}&1\end{array}\,} \right| = $

  • A

    $1 + {a^2} + {b^2} + {c^2}$

  • B

    $1 - {a^2} + {b^2} + {c^2}$

  • C

    $1 + {a^2} + {b^2} - {c^2}$

  • D

    $1 + {a^2} - {b^2} + {c^2}$

Similar Questions

$\left| {\,\begin{array}{*{20}{c}}{1 + i}&{1 - i}&i\\{1 - i}&i&{1 + i}\\i&{1 + i}&{1 - i}\end{array}\,} \right| = $

જો $\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right| = 5$; તો $\left| {\,\begin{array}{*{20}{c}}{{b_2}{c_3} - {b_3}{c_2}}&{{c_2}{a_3} - {c_3}{a_2}}&{{a_2}{b_3} - {a_3}{b_2}}\\{{b_3}{c_1} - {b_1}{c_3}}&{{c_3}{a_1} - {c_1}{a_3}}&{{a_3}{b_1} - {a_1}{b_3}}\\{{b_1}{c_2} - {b_2}{c_1}}&{{c_1}{a_2} - {c_2}{a_1}}&{{a_1}{b_2} - {a_2}{b_1}}\end{array}\,} \right|$ = . . .

જો $\omega $ એ એકનું કાલ્પનિક ઘનમૂળ હોય તો $\Delta = \left| {\begin{array}{*{20}{c}}1&{2\omega }\\\omega &{{\omega ^2}}\end{array}} \right|$, તો ${\Delta ^2}$ = . . .

બે પાસાને ઉછાળવામાં આવે છે. તેમની પરના અંકોને  $\lambda$ અને $\mu$ લેવામાં આવે છે અને સમીકરણ સંહતિ 

$x+y+z=5$    ;    $x+2 y+3 z=\mu$   ;     $x+3 y+\lambda z=1$

ને બનાવમાં આવે છે.જો $\mathrm{p}$ એ સમીકરણ સંહતિને એકાકી ઉકેલ હોય તેની સંભાવના દર્શાવે છે અને $\mathrm{q}$ એ સમીકરણ સંહતિનો ઉકેલગણ ખાલીગણ છે તેની સંભાવના દર્શાવે છે તો

  • [JEE MAIN 2021]

$\lambda$ અને $\mu$ ની અનુક્રમે ............. કિમતો માટે સુરેખ સમીકરણ સંહિતા 

$x+y+z=2$

$x+2 y+3 z=5$

$x+3 y+\lambda z=\mu$

ને અનંત ઉકેલો મળે 

  • [JEE MAIN 2020]