જો $\alpha $ અને $\beta $ એ સમીકરણ $x^2 + x + 1 = 0$ ના બીજ હોય તો  $y (\ne 0) \in R$ માટે $\left| {\begin{array}{*{20}{c}}
{y\, + \,1}&\alpha &\beta \\
\alpha &{y\, + \,\beta }&1\\
\beta &1&{y\, + \,\alpha }
\end{array}} \right|$  મેળવો.

  • [JEE MAIN 2019]
  • A

    $y\,({y^2} - \,3)$

  • B

    ${y^3} - \,1$

  • C

    $y^3$

  • D

    $y\,({y^2} - \,1)$

Similar Questions

રેખીય સમીકરણની સિસ્ટમ $x + y + z = 2, 2x + 3y + 2z = 5$, $2x + 3y + (a^2 -1)\,z = a + 1$ તો

  • [JEE MAIN 2019]

સુરેખ સમીકરણો $a(x + y + z)=x,b(x + y + z) = y, c(x + y + z) = z$ કે જ્યાં $a,b,c$  એ શૂન્યતર વાસ્તવિક સંખ્યા છે . જો વાસ્તવિક સંખ્યાઓ $x,y,z$ છે કે જેથી  $xyz \neq 0,$ તો   $(a + b + c)$ મેળવો.

$\Delta = \left| {\,\begin{array}{*{20}{c}}{a + x}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right|$ નો અવયવ . . . .થાય.

સમીકરણની સંહતિ $2x + 3y + 4z = 9$,$4x + 9y + 3z = 10,$$5x + 10y + 5z = 11$તો $x$ ની કિમત મેળવો.

ધારો કે $\lambda, \mu \in {R}$. જો સમીકરણ સંહતિ

$ 3 x+5 y+\lambda z=3 $

$ 7 x+11 y-9 z=2$

$97 x+155 y-189 z=\mu$ ને અસંખ્ય ઉકેલો હોય, તો $\mu+2 \lambda=$..........

  • [JEE MAIN 2024]