જો $z$ એ સંકર સંખ્યા છે કે જેથી  $\left| z \right| + z = 3 + i$ (જ્યાં $i = \sqrt { - 1} $). તો  $\left| z \right|$ ની કિમત મેળવો. 

  • [JEE MAIN 2019]
  • A

    $\frac{{\sqrt {34} }}{3}$

  • B

    $\frac{5}{3}$

  • C

    $\frac{{\sqrt {41} }}{4}$

  • D

    $\frac{5}{4}$

Similar Questions

જો $z_1, z_2, z_3$ $\in$  $C$ એવા મળે કે જેથી $|z_1| = |z_2| = |z_3| = 2$, હોય તો સમીકરણ $|z_1 - z_2|.|z_2 - z_3| + |z_3 - z_1|.|z_1 - z_2| + |z_2 - z_3||z_3 - z_1|$ ની મહત્તમ કિમત મેળવો 

ધારોકે $S=\left\{z \in C : z^{2}+\bar{z}=0\right\}$ છે. તો $\sum \limits_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$ is equal to$......$

  • [JEE MAIN 2022]

જો $\frac{{2{z_1}}}{{3{z_2}}}$ એ શુદ્ધ કાલ્પનિક સંખ્યા હોય તો $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right|$ = . . .

જો $z$ સંકર સંખ્યા છે કે જેથી $\left|\frac{z-i}{z+2 i}\right|=1$ અને  $|z|=\frac{5}{2} \cdot$ હોય તો $|z+3 i|$ મેળવો.

  • [JEE MAIN 2020]

$\sin \frac{\pi }{5} + i\,\left( {1 - \cos \frac{\pi }{5}} \right)$ નો કોણાંક મેળવો.