Let $z_1$ and $z_2$ be any two non-zero complex numbers such that $3\left| {{z_1}} \right| = 4\left| {{z_2}} \right|$. If $z = \frac{{3{z_1}}}{{2{z_2}}} + \frac{{2{z_2}}}{{3{z_1}}}$ then
Re$(z) = 0$
$\left| z \right| = \sqrt {\frac{5}{2}} $
$\left| z \right| = \frac{1}{2}\sqrt {\frac{{17}}{2}} $
Im$(z) \neq 0$
If $z$ is a complex number such that $|z - \bar{z}| = 2$ and $|z + \bar{z}| = 4 $, then which of the following is always incorrect -
If $arg\, z < 0$ then $arg\, (-z)\, -arg(z)$ is equal to
$arg\,(5 - \sqrt 3 i) = $
If ${Z_1} \ne 0$ and $Z_2$ be two complex numbers such that $\frac{{{Z_2}}}{{{Z_1}}}$ is a purely imaginary number, then $\left| {\frac{{2{Z_1} + 3{Z_2}}}{{2{Z_1} - 3{Z_2}}}} \right|$ is equal to
The conjugate of the complex number $\frac{{2 + 5i}}{{4 - 3i}}$ is