If $arg\, z < 0$ then $arg\, (-z)\, -arg(z)$ is equal to
$\pi $
$-\pi $
$-\frac {\pi }{2}$
$\frac {\pi }{2}$
The minimum value of $|2z - 1| + |3z - 2|$is
If $\frac{3+i \sin \theta}{4-i \cos \theta}, \theta \in[0,2 \pi],$ is a real number, then an argument of $\sin \theta+\mathrm{i} \cos \theta$ is
Let $z$ be complex number such that $\left|\frac{z-i}{z+2 i}\right|=1$ and $|z|=\frac{5}{2} \cdot$ Then the value of $|z+3 i|$ is
If $|z|\, = 1$ and $\omega = \frac{{z - 1}}{{z + 1}}$ (where $z \ne - 1)$, then ${\mathop{\rm Re}\nolimits} (\omega )$ is
The argument of the complex number $ - 1 + i\sqrt 3 $ is ............. $^\circ$