If $z$ is a complex number such that $|z - \bar{z}| = 2$ and $|z + \bar{z}| = 4 $, then which of the following is always incorrect -

  • A

    $Amp(z)\in(-\frac{\pi}{6},0)$

  • B

    $Amp(z)\in(\frac{5\pi}{6},\pi)$

  • C

    $Amp(z)\in(0,\frac{\pi}{6})$

  • D

    $Amp(z)\in(\frac{\pi}{6},\frac{\pi}{4})$

Similar Questions

Number of complex numbers $z$ such that $\left| z \right| + z - 3\bar z = 0$ is equal to

If ${z_1}.{z_2}........{z_n} = z,$ then $arg\,{z_1} + arg\,{z_2} + ....$+$arg\,{z_n}$ and $arg$$z$ differ by a

If for complex numbers ${z_1}$ and ${z_2}$, $arg({z_1}/{z_2}) = 0,$ then $|{z_1} - {z_2}|$ is equal to

Find the complex number z satisfying the equations $\left| {\frac{{z - 12}}{{z - 8i}}} \right| = \frac{5}{3},\left| {\frac{{z - 4}}{{z - 8}}} \right| = 1$

If ${z_1},{z_2},{z_3}$ are complex numbers such that $|{z_1}|\, = \,|{z_2}|\, = $ $\,|{z_3}|\, = $ $\left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}} + \frac{1}{{{z_3}}}} \right| = 1\,,$ then${\rm{ }}|{z_1} + {z_2} + {z_3}|$ is

  • [IIT 2000]