$A B C$ त्रिभुज में $A B, A C$ पर क्रमशः $D$ और $E$ बिन्दु हैं जिससे कि $D E B C$ के समांतर $(parallel)$ है। मान लीजिए कि BE, CD O पर प्रतिच्छेद $(intersect)$ होते है। यदि $ADE$ मौर $ODE$ त्रिभुजों का क्षेत्र फल $(area)$ क्रमश: $3$ और $1$ है तो $ABC$ का क्षेत्रफल औचित्य $(justification)$ के साथ ज्ञात करें।
(d)
Let the total number of CD's sold by the Leela and Madan together $=x$ Total money obtained by them
$=(x \times x)=x^2$
They divided $x^2$ in such that, $x^2=10$ (an odd number) $+$ a number less than $10$
$\Rightarrow \quad x=10 q+r \quad[\because 0 \leq r < 10]$
$\Rightarrow \quad x^2=(10 q+r)^2$
$\Rightarrow \quad x^2=100 q^2+20 q r+r^2$
$r^2=10$ (an odd number) $+$ a number less
than $10$
$r=16$ or $36$
$r^2=10+6$ or $3(10)+6$
Hence, the amount left for Madan at the end is $6$ rupees.
यदि समीकरण $4{x^3} + 16{x^2} - 9x - 36 = 0$ के दो मूलों का योग शून्य हो तो मूल होंगे
समीकरण $e ^{4 x }+ e ^{3 x }-4 e ^{2 x }+ e ^{ x }+1=0$ के वास्तविक मूलों की संख्या है
यदि समीकरण $8{x^3} - 14{x^2} + 7x - 1 = 0$ के मूूल गुणोत्तर श्रेणी में हों, तो मूल होंगे
समीकरण ${x^4} - 4{x^3} + 6{x^2} - 4x + 1 = 0$ के मूल होंगे
माना $\alpha$ और $\beta$ समीकरण $5 x^{2}+6 x-2=0$ के मूल हैं यदि $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3, \ldots$, तो