यदि समीकरण $4{x^3} + 16{x^2} - 9x - 36 = 0$ के दो मूलों का योग शून्य हो तो मूल होंगे
$1, 2 -2$
$ - 2,\frac{2}{3}, - \frac{2}{3}$
$ - 3,\frac{3}{2}, - \frac{3}{2}$
$ - 4,\frac{3}{2}, - \frac{3}{2}$
मान लें $a=\sum \limits_{n=101}^{200} 2^n \sum \limits_{k=101}^n \frac{1}{k !}$ और $b=\sum \limits_{n=101}^{200} \frac{2^{201}-2^n}{n !}$ तब $\frac{a}{b}$ है:
यदि $\alpha , \beta , \gamma $ समीकरण ${x^3} + a{x^2} + bx + c = 0$ के मूल हों, तो ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $
माना $\lambda \in \mathbb{R}$ है तथा माना समीकरण $\mathrm{E}:|\mathrm{x}|^2-2|\mathrm{x}|+|\lambda-3|=0$ है। तो समुच्चय $\mathrm{S}=\{\mathrm{x}+\lambda: \mathrm{x}, \mathrm{E}$ का एक पूर्णांक हल है $\}$ में सबसे बड़ा अवयव है______________.
यदि $x, y, z$ धनात्मक वास्तविक संख्या हैं, तो निम्नलिखित में से कौन से समीकरण $x=y=z$ को संकेत करते हैं ?
$I.$ $x^3+y^3+z^3=3 x y z$
$II.$ $x^3+y^2 z+y z^2=3 x y z$
$III.$ $x^3+y^2 z+z^2 x=3 x y z$
$IV.$ $(x+y+z)^3=27 x y z$
यदि व्यंजक $\left( {mx - 1 + \frac{1}{x}} \right)$ सदैव अऋणात्मक है तब $m$ का न्यूनतम मान होगा