Leela and Madan pooled their music $CD's$ and sold them. They got as many rupees for each $CD$ as the total number of $CD's$ they sold. They share the money as follows: Leela first takes $10$ rupees, then Madan takes $10$ rupees and they continue taking $10$ rupees alternately till Madan is left out with less than $10$ rupees to take. Find the amount that is left out for Madan at the end, with justification.

  • [KVPY 2010]
Vedclass pdf generator app on play store
Vedclass iOS app on app store

(d)

Let the total number of CD's sold by the Leela and Madan together $=x$ Total money obtained by them

$=(x \times x)=x^2$

They divided $x^2$ in such that, $x^2=10$ (an odd number) $+$ a number less than $10$

$\Rightarrow \quad x=10 q+r \quad[\because 0 \leq r < 10]$

$\Rightarrow \quad x^2=(10 q+r)^2$

$\Rightarrow \quad x^2=100 q^2+20 q r+r^2$

$r^2=10$ (an odd number) $+$ a number less

than $10$

$r=16$ or $36$

$r^2=10+6$ or $3(10)+6$

Hence, the amount left for Madan at the end is $6$ rupees.

Similar Questions

Let $[t]$ denote the greatest integer $\leq t .$ Then the equation in $x ,[ x ]^{2}+2[ x +2]-7=0$ has

  • [JEE MAIN 2020]

If $\log _{(3 x-1)}(x-2)=\log _{\left(9 x^2-6 x+1\right)}\left(2 x^2-10 x-2\right)$, then $x$ equals

  • [KVPY 2015]

Let $a, b, c, d$ be real numbers between $-5$ and $5$ such that  $|a|=\sqrt{4-\sqrt{5-a}},|b|=\sqrt{4+\sqrt{5-b}},|c|=\sqrt{4-\sqrt{5+c}}$ $|d|=\sqrt{4+\sqrt{5+d}}$ Then, the product $a b c d$ is

  • [KVPY 2017]

The number of real roots of the equation ${e^{\sin x}} - {e^{ - \sin x}} - 4$ $ = 0$ are

  • [IIT 1982]

The equation $x^2-4 x+[x]+3=x[x]$, where $[x]$ denotes the greatest integer function, has:

  • [JEE MAIN 2023]