समीकरण $e ^{4 x }+ e ^{3 x }-4 e ^{2 x }+ e ^{ x }+1=0$ के वास्तविक मूलों की संख्या है
$4$
$2$
$3$
$1$
दो भिन्न बहुपद $f(x)$ और $g(x)$ इस प्रकार हैं: $f(x)=x^2+a x+2 ; \quad g(x)=x^2+2 x+a \text {. }$
यदि समीकरण $f(x)=0, g(x)=0$ का एक शून्यक साझा हो तो, समीकरण $f(x)+g(x)=0$ के शून्यकों का योग होगा :
यदि समीकरण ${x^2} - 3kx + 2{e^{2\log k}} - 1 = 0$ के मूलों का गुणनफल $7$ है, तो इसके मूल वास्तविक होंगे जब
यदि आधार $10$ $(base\,10 )$ में प्राकृतिक संख्याओं $n$ के अंकों का गुणनफल $n^2-10 n-36$ है, तब ऐसी सभी प्राकृतिक संख्याओं का योगफल होगा :
यदि $\alpha , \beta , \gamma $ समीकरण ${x^3} + a{x^2} + bx + c = 0$ के मूल हों, तो ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $
समीकरण
$\log _{(x+1)}\left(2 x^{2}+7 x+5\right)+\log _{(2 x+5)}(x+1)^{2}-4=0 \text {, }$
$x > 0$ के हलों की संख्या है ..............